scholarly journals Amygdala and auditory cortex differentially modulate tonal receptive fields in the inferior colliculus

IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S162-S163
Author(s):  
Jeongyoon Lee ◽  
Jeff Lin ◽  
Adam Swiercz ◽  
Zhe Yu ◽  
Paul J. Marvar ◽  
...  
2013 ◽  
Vol 109 (1) ◽  
pp. 261-272 ◽  
Author(s):  
Alain de Cheveigné ◽  
Jean-Marc Edeline ◽  
Quentin Gaucher ◽  
Boris Gourévitch

Local field potentials (LFPs) recorded in the auditory cortex of mammals are known to reveal weakly selective and often multimodal spectrotemporal receptive fields in contrast to spiking activity. This may in part reflect the wider “listening sphere” of LFPs relative to spikes due to the greater current spread at low than high frequencies. We recorded LFPs and spikes from auditory cortex of guinea pigs using 16-channel electrode arrays. LFPs were processed by a component analysis technique that produces optimally tuned linear combinations of electrode signals. Linear combinations of LFPs were found to have sharply tuned responses, closer to spike-related tuning. The existence of a sharply tuned component implies that a cortical neuron (or group of neurons) capable of forming a linear combination of its inputs has access to that information. Linear combinations of signals from electrode arrays reveal information latent in the subspace spanned by multichannel LFP recordings and are justified by the fact that the observations themselves are linear combinations of neural sources.


2020 ◽  
Vol 123 (2) ◽  
pp. 695-706
Author(s):  
Lu Luo ◽  
Na Xu ◽  
Qian Wang ◽  
Liang Li

The central mechanisms underlying binaural unmasking for spectrally overlapping concurrent sounds, which are unresolved in the peripheral auditory system, remain largely unknown. In this study, frequency-following responses (FFRs) to two binaurally presented independent narrowband noises (NBNs) with overlapping spectra were recorded simultaneously in the inferior colliculus (IC) and auditory cortex (AC) in anesthetized rats. The results showed that for both IC FFRs and AC FFRs, introducing an interaural time difference (ITD) disparity between the two concurrent NBNs enhanced the representation fidelity, reflected by the increased coherence between the responses evoked by double-NBN stimulation and the responses evoked by single NBNs. The ITD disparity effect varied across frequency bands, being more marked for higher frequency bands in the IC and lower frequency bands in the AC. Moreover, the coherence between IC responses and AC responses was also enhanced by the ITD disparity, and the enhancement was most prominent for low-frequency bands and the IC and the AC on the same side. These results suggest a critical role of the ITD cue in the neural segregation of spectrotemporally overlapping sounds. NEW & NOTEWORTHY When two spectrally overlapped narrowband noises are presented at the same time with the same sound-pressure level, they mask each other. Introducing a disparity in interaural time difference between these two narrowband noises improves the accuracy of the neural representation of individual sounds in both the inferior colliculus and the auditory cortex. The lower frequency signal transformation from the inferior colliculus to the auditory cortex on the same side is also enhanced, showing the effect of binaural unmasking.


2005 ◽  
Vol 94 (4) ◽  
pp. 2970-2975 ◽  
Author(s):  
Rajiv Narayan ◽  
Ayla Ergün ◽  
Kamal Sen

Although auditory cortex is thought to play an important role in processing complex natural sounds such as speech and animal vocalizations, the specific functional roles of cortical receptive fields (RFs) remain unclear. Here, we study the relationship between a behaviorally important function: the discrimination of natural sounds and the structure of cortical RFs. We examine this problem in the model system of songbirds, using a computational approach. First, we constructed model neurons based on the spectral temporal RF (STRF), a widely used description of auditory cortical RFs. We focused on delayed inhibitory STRFs, a class of STRFs experimentally observed in primary auditory cortex (ACx) and its analog in songbirds (field L), which consist of an excitatory subregion and a delayed inhibitory subregion cotuned to a characteristic frequency. We quantified the discrimination of birdsongs by model neurons, examining both the dynamics and temporal resolution of discrimination, using a recently proposed spike distance metric (SDM). We found that single model neurons with delayed inhibitory STRFs can discriminate accurately between songs. Discrimination improves dramatically when the temporal structure of the neural response at fine timescales is considered. When we compared discrimination by model neurons with and without the inhibitory subregion, we found that the presence of the inhibitory subregion can improve discrimination. Finally, we modeled a cortical microcircuit with delayed synaptic inhibition, a candidate mechanism underlying delayed inhibitory STRFs, and showed that blocking inhibition in this model circuit degrades discrimination.


1998 ◽  
Vol 79 (4) ◽  
pp. 2040-2062 ◽  
Author(s):  
Willard W. Wilson ◽  
William E. O'Neill

Wilson, Willard W. and William E. O'Neill. Auditory motion induces directionally dependent receptive field shifts in inferior colliculus neurons. J. Neurophysiol. 79: 2040–2062, 1998. This research focused on the response of neurons in the inferior colliculus of the unanesthetized mustached bat, Pteronotus parnelli, to apparent auditory motion. We produced the apparent motion stimulus by broadcasting pure-tone bursts sequentially from an array of loudspeakers along horizontal, vertical, or oblique trajectories in the frontal hemifield. Motion direction had an effect on the response of 65% of the units sampled. In these cells, motion in opposite directions produced shifts in receptive field locations, differences in response magnitude, or a combination of the two effects. Receptive fields typically were shifted opposite the direction of motion (i.e., units showed a greater response to moving sounds entering the receptive field than exiting) and shifts were obtained to horizontal, vertical, and oblique motion orientations. Response latency also shifted as a function of motion direction, and stimulus locations eliciting greater spike counts also exhibited the shortest neural latency. Motion crossing the receptive field boundaries appeared to be both necessary and sufficient to produce receptive field shifts. Decreasing the silent interval between successive stimuli in the apparent motion sequence increased both the probability of obtaining a directional effect and the magnitude of receptive field shifts. We suggest that the observed directional effects might be explained by “spatial masking,” where the response of auditory neurons after stimulation from particularly effective locations in space would be diminished. The shift in auditory receptive fields would be expected to shift the perceived location of a moving sound and may explain shifts in localization of moving sources observed in psychophysical studies. Shifts in perceived target location caused by auditory motion might be exploited by auditory predators such as Pteronotus in a predictive tracking strategy to capture moving insect prey.


1990 ◽  
Vol 64 (2) ◽  
pp. 582-597 ◽  
Author(s):  
B. J. Blatchley ◽  
J. F. Brugge

1. Responses of single neurons to monaural or binaural CF tones delivered through a closed and calibrated sound delivery system were studied in the central nucleus of the inferior colliculus (ICC) in ketamine and barbiturate-anesthetized kittens 4-105 days old. 2. Neurons from young kittens had elevated thresholds, some greater than 100 dB in the youngest kittens tested. Average thresholds in the ICC matched those previously measured in the auditory nerve (AN), cochlear nuclei (CN), and auditory cortex (CTX), suggesting that the drop in threshold as a function of age is primarily determined by development at the periphery. 3. Minimal first-spike latencies were relatively long in the youngest kittens, approaching adult values by the end of the third postnatal week. Latencies were distributed between values previously determined for the CN and auditory cortex and can be attributed to the centripetal development of the auditory system. 4. The range of frequencies that were effective in exciting ICC neurons was restricted in young kittens. Neurons having characteristic frequencies (CFs) greater than 7 kHz were not recorded before postnatal day 10. CF distribution matched that obtained in previous experiments from AN, CN, and CTX, reflecting the development of the cochlea. 5. Both monotonic and nonomonotonic spike count-versus-intensity functions were found in the youngest kittens. There was a tendency for monotonic functions from the youngest kittens to be steeper than those from older kittens. No age-related changes in the shapes of non-monotonic functions were found. 6. Sensitivity to interaural intensity difference (IID), tested by holding the intensity to the excitatory ear at a suprathreshold level and increasing the intensity of the stimulus to the inhibitory ear, was exhibited as early as 8 days after birth. The majority of the cells exhibiting sensitivity to IID (89.5%) were classified as EI cells, and almost all IID sensitive cells had CFs between 3 and 25 kHz. Within our sample the shapes of IID functions, as well as the operating range of the IID functions, closely resembled those obtained from the adult cat. Thresholds of excitation and of inhibition were highly correlated, suggesting that the ipsilateral and contralateral inputs to the ICC develop as a matched set. 7. Sensitivity to interaural phase difference (IPD), tested either by shifting the onset phase of a CF tone to one ear relative to the other or by presenting tones of slightly different frequency to the two ears, was present as early as 12 days after birth.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Zbyněk Bureš ◽  
Kateryna Pysanenko ◽  
Jiří Lindovský ◽  
Josef Syka

It is well known that auditory experience during early development shapes response properties of auditory cortex (AC) neurons, influencing, for example, tonotopical arrangement, response thresholds and strength, or frequency selectivity. Here, we show that rearing rat pups in a complex acoustically enriched environment leads to an increased reliability of responses of AC neurons, affecting both the rate and the temporal codes. For a repetitive stimulus, the neurons exhibit a lower spike count variance, indicating a more stable rate coding. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Furthermore, the neurons follow more precisely the temporal course of the stimulus, as manifested by improved phase-locking to temporally modulated sounds. The changes are persistent and present up to adulthood. The results document that besides basic alterations of receptive fields presented in our previous study, the acoustic environment during the critical period of postnatal development also leads to a decreased stochasticity and a higher reproducibility of neuronal spiking patterns.


Sign in / Sign up

Export Citation Format

Share Document