About the Solar Activity Rotation Periods

2007 ◽  
Author(s):  
Zadig Mouradian
2020 ◽  
Vol 636 ◽  
pp. A69 ◽  
Author(s):  
E. M. Amazo-Gómez ◽  
A. I. Shapiro ◽  
S. K. Solanki ◽  
N. A. Krivova ◽  
G. Kopp ◽  
...  

Context. Young and active stars generally have regular, almost sinusoidal, patterns of variability attributed to their rotation, while the majority of older and less active stars, including the Sun, have more complex and non-regular light curves, which do not have clear rotational-modulation signals. Consequently, the rotation periods have been successfully determined only for a small fraction of the Sun-like stars (mainly the active ones) observed by transit-based planet-hunting missions, such as CoRoT, Kepler, and TESS. This suggests that only a small fraction of such systems have been properly identified as solar-like analogues. Aims. We aim to apply a new method of determining rotation periods of low-activity stars, such as the Sun. The method is based on calculating the gradient of the power spectrum (GPS) of stellar brightness variations and identifying a tell-tale inflection point in the spectrum. The rotation frequency is then proportional to the frequency of that inflection point. In this paper, we compare this GPS method to already-available photometric records of the Sun. Methods. We applied GPS, auto-correlation functions, Lomb-Scargle periodograms, and wavelet analyses to the total solar irradiance (TSI) time series obtained from the Total Irradiance Monitor on the Solar Radiation and Climate Experiment and the Variability of solar IRradiance and Gravity Oscillations experiment on the SOlar and Heliospheric Observatory missions. We analysed the performance of all methods at various levels of solar activity. Results. We show that the GPS method returns accurate values of solar rotation independently of the level of solar activity. In particular, it performs well during periods of high solar activity, when TSI variability displays an irregular pattern, and other methods fail. Furthermore, we show that the GPS and light curve skewness can give constraints on facular and spot contributions to brightness variability. Conclusions. Our results suggest that the GPS method can successfully determine the rotational periods of stars with both regular and non-regular light curves.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


1979 ◽  
Vol 44 ◽  
pp. 357-372
Author(s):  
Z. Švestka

The following subjects were discussed:(1)Filament activation(2)Post-flare loops.(3)Surges and sprays.(4)Coronal transients.(5)Disk vs. limb observations.(6)Solar cycle variations of prominence occurrence.(7)Active prominences patrol service.Of all these items, (1) and (2) were discussed in most detail and we also pay most attention to them in this report. Items (3) and (4) did not bring anything new when compared with the earlier invited presentations given by RUST and ZIRIN and therefore, we omit them.


Space Weather ◽  
2004 ◽  
Vol 2 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
David F. Webb ◽  
Joe H. Allen
Keyword(s):  

Author(s):  
M. Stienen ◽  
N. Smoll ◽  
M. Battaglia ◽  
B. Schatlo ◽  
C. Woernle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document