scholarly journals In situ target-strength measurement of young hairtail (Trichiurus haumela) in the Yellow Sea

2006 ◽  
Vol 63 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Xianyong Zhao

Abstract The target strength of hairtail (Trichiurus haumela) in the Yellow Sea was measured in situ with a 38 kHz, split-beam echosounder on 2 January 2001. The fish measured were of the 2000 year class, its anal length ranged from 62 to 115 mm, with a mean of 89.8 mm. The mean target strength of these young hairtail was estimated to be −49.2 dB, with a 95% confidence interval of (−49.4, −49.0) dB. This provided a rare and useful reference for the acoustic-abundance estimation of hairtail.

2008 ◽  
Vol 65 (6) ◽  
pp. 882-888 ◽  
Author(s):  
Xianyong Zhao ◽  
Yong Wang ◽  
Fangqun Dai

Abstract Zhao, X., Wang, Y., and Dai, F. 2008. Depth-dependent target strength of anchovy (Engraulis japonicus) measured in situ. – ICES Journal of Marine Science, 65: 882–888. Three sets of target strength (TS) data were collected in the southern part of the Yellow Sea using a calibrated, 38 kHz, Simrad EK500 split-beam echosounder. Midwater trawl sampling showed that >97% of the catch by number was anchovy (Engraulis japonicus), with total lengths ranging from 6 to 15 cm, and that the arithmetic-mean length and root-mean-square length were 10.6 and 10.8 cm, respectively. The mean TS of anchovy in the 10–45-m layer was estimated to be –50.9 dB, with a 95% confidence interval of (–51.0, –50.8) dB. The TS data showed, however, a clear depth-dependence that was very close to and not significantly different from what might be expected according to Boyle’s law. The TS model was estimated to be TS = 20 log L − 71.6 for the conventional relationship between TS and length, but TS = 20 log L− (20/3) log (1+z/10) − 67.6 when the depth (z, m) effect was included according to Boyle’s law. These results may have a significant influence on abundance estimates of anchovy derived from acoustic surveys, both in the Yellow Sea and in other parts of the world.


2012 ◽  
Vol 70 (2) ◽  
pp. 431-439 ◽  
Author(s):  
Richard L. O'Driscoll ◽  
Johannes Oeffner ◽  
Adam J. Dunford

Abstract O'Driscoll, R. L., Oeffner, J., and Dunford, A. J. 2013. In situ target strength estimates of optically verified southern blue whiting (Micromesistius australis) – ICES Journal of Marine Science, 70: 431–439. Estimates of the acoustic target strength (TS) of southern blue whiting (Micromesistius australis) at 38 kHz were obtained using an autonomous acoustic–optical system (AOS) mounted on a demersal trawl. Data were collected from aggregations of spawning adult [mean fork length (FL) 34.4 cm] and immature (mean FL 24.6 cm) southern blue whiting south of New Zealand. Mean TS was estimated from 162 tracks containing 695 echoes from targets identified from video as southern blue whiting. The mean TS was –37.9 dB with a 95% confidence interval (CI) of –39.7 to –36.6 dB for 21 immature fish and –34.6 dB (95% CI –35.4 to –34.0 dB) for 141 adults. A logarithmic fit through the mean TS values produced a TS–fork length (FL) relationship from optically verified targets of TS = 22.06 log10FL – 68.54. This new relationship gives TS values within 1 dB of those estimated using the relationship recently adopted by ICES for blue whiting (Micromesistius poutassou) of TS = 20 log10TL – 65.2 (where TL is total length) obtained from in situ measurements, but higher values than those estimated from the previous relationship for southern blue whiting of TS = 38 log10FL – 97, which was based on swimbladder modelling.


2012 ◽  
Vol 70 (1) ◽  
pp. 215-222 ◽  
Author(s):  
Gavin J. Macaulay ◽  
Rudy J. Kloser ◽  
Tim E. Ryan

Abstract Macaulay, G. J., Kloser, R. J., and Ryan, T. E. 2013. In situ target strength estimates of visually verified orange roughy. – ICES Journal of Marine Science, 70:215–222. The first estimates of orange roughy (Hoplostethus atlanticus) target strength at 38 and 120 kHz with visual verification were obtained from a self-contained echosounder and video camera system affixed to a demersal trawl towed through dense aggregations of spawning orange roughy. Mean target strength estimates were obtained from 24 tracks of orange roughy containing 83 echoes. The mean target strength at 38 kHz was –52.0 dB with a 95% confidence interval of –53.3 to –50.9 dB for fish with a mean length of 33.9 cm. At 120 kHz the mean target strength was –47.9 dB (confidence interval of –48.8 to –46.4 dB). This work makes two significant advances: in situ TS measurements have been made that can be confidently attributed to orange roughy, and using a trawl to herd orange roughy past the system resolved the previously intractable problem of fish avoidance.


2011 ◽  
Vol 11 (6) ◽  
pp. 2881-2892 ◽  
Author(s):  
Z. J. Ci ◽  
X. S. Zhang ◽  
Z. W. Wang ◽  
Z. C. Niu ◽  
X. Y. Diao ◽  
...  

Abstract. The Yellow Sea, surrounded by East China and the Korea Peninsula, is a potentially important receptor for anthropogenic mercury (Hg) emissions from East Asia. However, there is little documentation about the distribution and cycle of Hg in this marine system. During the cruise covering the Yellow Sea in July 2010, gaseous elemental mercury (GEM or Hg(0)) in the atmosphere, total Hg (THg), reactive Hg (RHg) and dissolved gaseous mercury (DGM, largely Hg(0)) in the waters were measured aboard the R/V Kexue III. The mean (±SD) concentration of GEM over the entire cruise was 2.61 ± 0.50 ng m−3 (range: 1.68 to 4.34 ng m−3), which were generally higher than other open oceans. The spatial distribution of GEM generally reflected a clear gradient with high levels near the coast of East China and low levels in open waters, suggesting the significant atmospheric Hg outflow from East China. The mean concentration of THg in the surface waters was 1.69 ± 0.35 ng l−1 and the RHg accounted for a considerable fraction of THg (RHg: 1.08 ± 0.28 ng l−1, %RHg/THg = 63.9%). The mean concentration of DGM in the surface waters was 63.9 ± 13.7 pg l−1 and always suggested the supersaturation of Hg(0) in the surface waters with respect to Hg(0) in the atmosphere (the degree of saturation: 7.8 ± 2.3 with a range of 3.6–14.0). The mean Hg(0) flux at the air-sea interface was estimated to be 18.3 ± 11.8 ng m−2 h−1 based on a two-layer exchange model. The high wind speed and DGM levels induced the extremely high Hg(0) emission rates. Measurements at three stations showed no clear vertical patterns of DGM, RHg and THg in the water column. Overall, the elevated Hg levels in the Yellow Sea compared with other open oceans suggested that the human activity has influenced the oceanic Hg cycle downwind of East Asia.


2009 ◽  
Vol 66 (6) ◽  
pp. 1264-1269 ◽  
Author(s):  
Ruben Patel ◽  
Egil Ona

Abstract Patel, R., and Ona, E. 2009. Measuring herring densities with one real and several phantom research vessels. – ICES Journal of Marine Science 66: 1264–1269. Vessel-induced avoidance can potentially cause a large bias in acoustic estimates of schooling, pelagic-fish biomass. This paper presents a method for quantifying this uncertainty. Volume-backscattering strength (Sv) from a horizontally projecting, multibeam sonar (Simrad MS70) is resampled to form synthetic, vertical, echosounder beams to the side of the survey vessel. These data are analysed as if they were collected from phantom vessels surveying parallel transects at fixed ranges from the real vessel. The nautical-area-backscattering coefficients (sA) from the synthetic echograms are compared with those measured by conventional 70 and 120 kHz echosounders (Simrad EK60) on the real vessel. Data collected in 2006 from schools of Norwegian spring-spawning herring are used to illustrate the method and explore its limitations. Potential effects of vessel-induced avoidance are evaluated by comparing the mean sA values observed from the phantom vessels with those observed from the real vessel. The technique also allows direct estimates of the mean lateral-aspect target strength of in situ herring.


2021 ◽  
Vol 72 (3) ◽  
pp. 449
Author(s):  
Julie Salvetat ◽  
Anne Lebourges-Dhaussy ◽  
Paulo Travassos ◽  
Sven Gastauer ◽  
Gildas Roudaut ◽  
...  

Triggerfish are widely distributed in tropical waters where they play an important ecological role. The black triggerfish Melichthys niger may be the dominant species around oceanic tropical islands, whereas pelagic triggerfish, such as the ocean triggerfish Canthidermis sufflamen, can assemble around fish aggregating devices (FADs) where they are a common bycatch of tuna fisheries. In this study we combined acoustic and optical recordings to provide the first in situ target strength (TS) measurement of black and ocean triggerfish. Data were collected in the Archipelago of Fernando de Noronha off north-east Brazil. The mean TS of a 27.8-cm-long black triggerfish at 70 and 200kHz was –39.3dB re 1m2 (CV=14.0%) and –38.9dB re 1m2 (CV=14.4%) respectively. The mean TS values of ocean triggerfish (with a size range of 39–44cm) at 70 and 200kHz were –36.0dB re 1m2 (CV=15.7%) and –33.3dB re 1m2 (CV=14.0%) respectively. This work opens up the field for acoustic biomass estimates. In addition, we have shown that TS values for ocean triggerfish are within the same range as those of small tunas. Therefore, acoustic data transmitted from FADs equipped with echosounders can introduce a bias in tuna acoustic biomass estimation and lead to increased rates of bycatch.


2013 ◽  
Vol 10 (7) ◽  
pp. 4721-4739 ◽  
Author(s):  
X. He ◽  
Y. Bai ◽  
D. Pan ◽  
C.-T. A. Chen ◽  
Q. Cheng ◽  
...  

Abstract. The eastern China seas are some of the largest marginal seas in the world, where high primary productivity and phytoplankton blooms are often observed. However, little is known about their systematic variation of phytoplankton blooms on large spatial and long temporal scales due to the difficulty of monitoring bloom events by field measurement. In this study, we investigated the seasonal and interannual variability and long-term changes in phytoplankton blooms in the eastern China seas using a 14 yr (1998–2011) time series of satellite ocean colour data. To ensure a proper satellite dataset to figure out the bloom events, we validated and corrected the satellite-derived chlorophyll concentration (chl a) using extensive in situ datasets from two large cruises. The correlation coefficients between the satellite retrieval data and the in situ chl a on the logarithmic scale were 0.85 and 0.72 for the SeaWiFS and Aqua/MODIS data, respectively. Although satellites generally overestimate the chl a, especially in highly turbid waters, both the in situ and satellite data show that the overestimation of satellite-derived chl a has an upper limit value (10 μg L−1), which can be used as a threshold for the identification of phytoplankton blooms to avoid the false blooms resulting from turbid waters. Taking 10 μg L−1 as the threshold, we present the spatial-temporal variability of phytoplankton blooms in the eastern China seas over the past 14 yr. Most blooms occur in the Changjiang Estuary and along the coasts of Zhejiang, with a maximal frequency of 20% (about 73 days per year). The coasts of the northern Yellow Sea and the Bohai Sea also have high-frequency blooms (up to 20%). The blooms show significant seasonal variation, with most occurring in spring (April–June) and summer (July–September). The study also revealed a doubling in bloom intensity in the Yellow Sea and Bohai Sea during the past 14 yr. The nutrient supply in the eastern China seas might be a major controlling factor in bloom variation. The time series in situ nutrient datasets show that both the nitrate and phosphate concentrations increased more than twofold between 1998 and 2005 in the Yellow Sea. This might be the reason for the doubling of the bloom intensity index in the Yellow Sea and Bohai Sea. In contrast, there has been no significant long-term increase or decrease in the Changjiang Estuary, which might be regulated by the Changjiang River discharge. These results offer a foundation for the study of the influence of phytoplankton blooms on the carbon flux estimation and biogeochemical processes in the eastern China seas.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 413
Author(s):  
Shengkai Wang ◽  
Li Yi ◽  
Suping Zhang ◽  
Xiaomeng Shi ◽  
Xianyao Chen

The microphysics and visibility of a sea-fog event were measured at the Qingdao Meteorological Station (QDMS) (120°19′ E, 36°04′ N) from 5 April to 8 April 2017. The two foggy periods with low visibility (<200 m) lasted 31 h together. The mean value of the average liquid water content (LWC) was 0.057 g m−3, and the mean value of the number concentration (NUM) was 64.4 cm−3. We found that although large droplets only constituted a small portion of the total number of the concentration; they contributed the majority of the LWC and therefore determined ~76% of total extinction of the visibility. The observed droplet-size distribution (DSD) exhibited a new bimodal Gaussian (G-exponential) distribution function, rather than the well-accepted Gamma distribution. This work suggests a new distribution function to describe fog DSD, which may help to improve the microphysical parameterization for the Yellow Sea fog numerical forecasting.


Sign in / Sign up

Export Citation Format

Share Document