Numerical analysis of heat transfer and friction drag relating to the effect of Joule heating, viscous dissipation and heat generation/absorption in aligned MHD slip flow of a nanofluid

Author(s):  
M. Riaz Khan ◽  
Shipeng Mao ◽  
Wejdan Deebani ◽  
Awatif M.A. Elsiddieg
Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 498
Author(s):  
Wasim Ullah Khan ◽  
Muhammad Awais ◽  
Nabeela Parveen ◽  
Aamir Ali ◽  
Saeed Ehsan Awan ◽  
...  

The current study is an attempt to analytically characterize the second law analysis and mixed convective rheology of the (Al2O3–Ag/H2O) hybrid nanofluid flow influenced by magnetic induction effects towards a stretching sheet. Viscous dissipation and internal heat generation effects are encountered in the analysis as well. The mathematical model of partial differential equations is fabricated by employing boundary-layer approximation. The transformed system of nonlinear ordinary differential equations is solved using the homotopy analysis method. The entropy generation number is formulated in terms of fluid friction, heat transfer and Joule heating. The effects of dimensionless parameters on flow variables and entropy generation number are examined using graphs and tables. Further, the convergence of HAM solutions is examined in terms of defined physical quantities up to 20th iterations, and confirmed. It is observed that large λ1 upgrades velocity, entropy generation and heat transfer rate, and drops the temperature. High values of δ enlarge velocity and temperature while reducing heat transport and entropy generation number. Viscous dissipation strongly influences an increase in flow and heat transfer rate caused by a no-slip condition on the sheet.


Author(s):  
Jennifer van Rij ◽  
Tim Ameel ◽  
Todd Harman

The effects of rarefaction on convective heat transfer and pressure drop characteristics are numerically evaluated for uniform wall heat flux rectangular microchannels. Results are obtained by numerically solving the momentum and energy equations with both first- and second-order slip velocity and temperature jump boundary conditions. The resulting velocity and temperature fields are then evaluated to obtain the microchannel Poiseuille and Nusselt numbers. In addition to the effects of rarefaction, the effects of aspect ratio, thermal creep flow, and viscous dissipation are investigated for locally fully developed Poiseuille and Nusselt numbers. The constant wall heat flux results obtained in this study are compared to constant wall temperature results obtained previously, using the same numerical algorithm, at various aspect ratios including the limiting case of parallel plate microchannels. In addition to supplying previously unreported data on slip flow convective heat transfer and pressure drop characteristics, these results verify the numerical algorithm for more complex future slip flow analyses.


1963 ◽  
Vol 85 (4) ◽  
pp. 371-377 ◽  
Author(s):  
J. T. Yen

Effect of wall electrical conductance on laminar fully developed magnetohydrodynamic heat transfer in a channel with constant wall heat flux and exact magnetohydrodynamic boundary conditions are investigated. For channels with insulated walls, viscous dissipation is more important than joule heating for all Ec and M. For sufficiently large wall conductance, viscous dissipation is dominated by joule heating for all Ec, if M is large enough; both are in turn dominated by wall heat flux if Ec is large enough for all M. These and other conclusions are discussed in this paper.


2017 ◽  
Vol 6 (2) ◽  
pp. 254-263 ◽  
Author(s):  
Umar Khan ◽  
. Adnan ◽  
Mir Asadullah ◽  
Naveed Ahmed ◽  
Syed Tauseef Mohyud-Din

Author(s):  
Metin B. Turgay ◽  
Almila G. Yazicioglu ◽  
Sadik Kakac

Effects of surface roughness, axial conduction, viscous dissipation, and rarefaction on heat transfer in a two–dimensional parallel plate microchannel with constant wall temperature are investigated numerically. Roughness is simulated by adding equilateral triangular obstructions with various heights on one of the plates. Air, with constant thermophysical properties, is chosen as the working fluid, and laminar, single-phase, developing flow in the slip flow regime at steady state is analyzed. Governing equations are solved by finite element method with tangential slip velocity and temperature jump boundary conditions to observe the rarefaction effect in the microchannel. Viscous dissipation effect is analyzed by changing the Brinkman number, and the axial conduction effect is analyzed by neglecting and including the corresponding term in the energy equation separately. Then, the effect of surface roughness on the Nusselt number is observed by comparing with the corresponding smooth channel results. It is found that Nusselt number decreases in the continuum case with the presence of surface roughness, while it increases with increasing roughness height in the slip flow regime, which is also more pronounced at low-rarefied flows (i.e., around Kn = 0.02). Moreover, the presence of axial conduction and viscous dissipation has increasing effects on heat transfer with increasing roughness height. Even in low velocity flows, roughness increases Nusselt number up to 33% when viscous dissipation is considered.


Sign in / Sign up

Export Citation Format

Share Document