scholarly journals Design and Implementation of a Wide-Area Damping Controller Using High Voltage DC Modulation and Synchrophasor Feedback * *The authors gratefully acknowledge financial support for this project from the Bonneville Power Administration (BPA) Office of Technology Innovation and the U.S. Department of Energy Office of Electricity (DOE/OE) Transmission Reliability and Energy Storage programs. ** **Sandia National Laboratories is a multi-mission laboratory managed & operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration, under contract DE-AC04-94AL85000. SAND2016-11534 C

2017 ◽  
Vol 50 (1) ◽  
pp. 67-72 ◽  
Author(s):  
David A. Schoenwald ◽  
Brian J. Pierre ◽  
Felipe Wilches-Bernal ◽  
Daniel J. Trudnowski
Author(s):  
Isaac L. Hunsaker ◽  
David J. Glaze ◽  
Jeremy N. Thornock ◽  
Philip J. Smith

There exists a general need to compare radiative fluxes from experimental radiometers with fluxes computed in Thermal/Fluid simulations. Unfortunately, typical numerical simulation suites lack the ability to predict fluxes to objects with small view angles thus preventing validation of simulation results. A new model has been developed that allows users to specify arbitrary view angles, orientations, and locations of multiple radiometers, and receive as the output, high-accuracy radiative fluxes to these radiometers. This virtual radiometer model incorporates a reverse monte-carlo ray tracing algorithm adapted to meet these user specifications and runs on both unstructured and structured meshes. Verification testing of the model demonstrated the expected order of convergence. Validation testing showed good agreement between calculated fluxes from the model and measured fluxes from radiometers used in propellant fires. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DEAC0494AL85000.


Author(s):  
Jeffrey G. Arbital ◽  
Dean R. Tousley ◽  
James C. Anderson

The National Nuclear Security Administration (NNSA) is shipping bulk quantities of fissile materials for disposition purposes, primarily highly enriched uranium (HEU), over the next 15 to 20 years. The U.S. Department of Transportation (DOT) specification 6M container has been the workhorse for NNSA and many other shippers of radioactive material. However, the 6M does not conform to the safety requirements in the Code of Federal Regulations (10 CFR 71[1]) and, for that reason, is being phased out for use in the secure transportation system of the U.S. Department of Energy (DOE) in early 2006. BWXT Y-12 is currently developing the replacement for the DOT 6M container for NNSA and other users. The new package is based on state-of-the-art, proven, and patented technologies that have been successfully applied in the design of other packages. The new package will have a 50% greater capacity for HEU than the 6M, and it will be easier to use with a state-of-the-art closure system on the containment vessel. This new package is extremely important to the future of fissile, radioactive material transportation. An application for license was submitted to the U.S. Nuclear Regulatory Commission (NRC) in February 2005. This paper reviews the license submittal, the licensing process, and the proposed contents of this new state-of-the-art shipping container.


2020 ◽  
Author(s):  
Todd Zeitler ◽  
James Bethune ◽  
Sarah Brunell ◽  
Dwayne Kicker ◽  
Jennifer Long

<p>The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA) according to the regulations set forth in Title 40 of the Code of Federal Regulations (CFR), Part 191. The DOE demonstrates compliance with the containment requirements according to the Certification Criteria in Title 40 CFR Part 194 by means of performance assessment (PA) calculations performed by Sandia National Laboratories (SNL). WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure.</p><p>The models used in PA are maintained and updated with new information as part of an ongoing process. Improved information regarding important WIPP features, events, and processes typically results in refinements and modifications to PA models and the parameters used in them. Planned changes to the repository and/or the components therein also result in updates to WIPP PA models. WIPP PA models are used to support the repository recertification process that occurs at five-year intervals following the receipt of the first waste shipment at the site in 1999.</p><p>The 2019 Compliance Recertification Application (CRA-2019) is the fourth WIPP recertification application submitted for approval by the EPA. A PA has been executed by SNL in support of the DOE submittal of the CRA-2019. Results found in the CRA-2019 PA are compared to those obtained in the 2014 Compliance Recertification Application (CRA-2014) PA in order to assess repository performance in terms of the current regulatory baseline. This presentation includes a summary of the changes modeled in the CRA-2019 PA, as well as the estimated releases over the assumed 10,000-year regulatory period. Changes incorporated into the CRA-2019 PA included repository planned changes, parameter updates, and refinements to PA implementation.</p><p>Overall, the total normalized releases for the CRA-2019 PA have increased at all probabilities compared to those from the CRA-2014 PA. Releases from each of the four potential release mechanisms tracked in WIPP PA (cuttings and cavings, spallings, releases from the Culebra formation, and direct brine releases) have also increased at all probability levels. Cuttings and cavings releases continue to dominate total releases at high probabilities and direct brine releases continue to dominate total releases at low probabilities. Although the calculated releases have increased, the total normalized releases continue to remain below regulatory limits. As a result, the CRA-2019 PA demonstrates that the WIPP remains in compliance with the containment requirements of 40 CFR Part 191.</p><p>Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. SAND2020-0131A</p>


Author(s):  
Jeffrey G. Arbital ◽  
Gerald A. Byington ◽  
Dean R. Tousley

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) is shipping bulk quantities of surplus fissile materials, primarily highly enriched uranium (HEU), over the next 15 to 20 years for disposition purposes. The U.S. Department of Transportation (DOT) specification 6M container is the package of choice for most of these shipments. However, the 6M does not conform to the Type B packaging requirements in the Code of Federal Regulations (10CFR71) and, for that reason, is being phased out for use in the secure transportation system of DOE. BWXT Y-12 is currently developing a package to replace the DOT 6M container for HEU disposition shipping campaigns. The new package is based on state-of-the-art, proven, and patented insulation technologies that have been successfully applied in the design of other packages. The new package, designated the ES-3100, will have a 50% greater capacity for HEU than the 6M and will be easier to use. Engineering analysis on the new package includes detailed dynamic impact finite element analysis (FEA). This analysis gives the ES-3100 a high probability of complying with regulatory requirements.


Sign in / Sign up

Export Citation Format

Share Document