scholarly journals Path planning with fractional potential fields for autonomous vehicles

2017 ◽  
Vol 50 (1) ◽  
pp. 14533-14538 ◽  
Author(s):  
Julien Moreau ◽  
Pierre Melchior ◽  
Stéphane Victor ◽  
François Aioun ◽  
Franck Guillemard
2019 ◽  
Vol 22 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Jean-Baptiste Receveur ◽  
Stéphane Victor ◽  
Pierre Melchior

Abstract Trajectory planning for autonomous vehicles is a research topical subject. In previous studies, optimal intermediate targets have been used in the Potential Fields (PFs). PFs are only a path planning method, or a reactive obstacle avoidance method and not a trajectory tracking method. In this article, the PFs are interpreted as an on-line control method to follow an optimal trajectory. An analysis and methodological approach to design the attractive potential as a robust controller are proposed, and a new definition of a fractional repulsive potential to characterize the dangerousness of obstacles is developed. Simulation results on autonomous vehicles are given.


2013 ◽  
Vol 25 (2) ◽  
pp. 400-407 ◽  
Author(s):  
Mitsunori Kitamura ◽  
◽  
Yoichi Yasuoka ◽  
Taro Suzuki ◽  
Yoshiharu Amano ◽  
...  

This paper describes a path planning method that uses the Quasi-Zenith Satellites System(QZSS) and a satellite visibility map for autonomous vehicles. QZSS is a positioning system operated by Japan that has an effect similar to an increase in the number of GPS satellites. Therefore, QZSS can be used to improve the availability of GPS positioning. A satellite visibility map is a special map that simulates the number of visible satellites at all points on the map. The vehicle can use the satellite visibility map to determine the points that receive more satellite signals. The proposed method generates the artificial potential fields from the satellite visibility map and obstacle information around the vehicle, and it generates the path following the potential fields. Thereby, the vehicle can select the path that has more satellite signals, improving the availability of GPS fixed solutions. Hence, the vehicle can reduce the accumulated error by dead reckoning, and it can improve the safety of self-control. In this study, we evaluate the satellite visibility maps and the path planning method. The results show that the proposed method does improve the availability of GPS fixed solutions.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2244
Author(s):  
S. M. Yang ◽  
Y. A. Lin

Safe path planning for obstacle avoidance in autonomous vehicles has been developed. Based on the Rapidly Exploring Random Trees (RRT) algorithm, an improved algorithm integrating path pruning, smoothing, and optimization with geometric collision detection is shown to improve planning efficiency. Path pruning, a prerequisite to path smoothing, is performed to remove the redundant points generated by the random trees for a new path, without colliding with the obstacles. Path smoothing is performed to modify the path so that it becomes continuously differentiable with curvature implementable by the vehicle. Optimization is performed to select a “near”-optimal path of the shortest distance among the feasible paths for motion efficiency. In the experimental verification, both a pure pursuit steering controller and a proportional–integral speed controller are applied to keep an autonomous vehicle tracking the planned path predicted by the improved RRT algorithm. It is shown that the vehicle can successfully track the path efficiently and reach the destination safely, with an average tracking control deviation of 5.2% of the vehicle width. The path planning is also applied to lane changes, and the average deviation from the lane during and after lane changes remains within 8.3% of the vehicle width.


2021 ◽  
Vol 11 (11) ◽  
pp. 5057
Author(s):  
Wan-Yu Yu ◽  
Xiao-Qiang Huang ◽  
Hung-Yi Luo ◽  
Von-Wun Soo ◽  
Yung-Lung Lee

The autonomous vehicle technology has recently been developed rapidly in a wide variety of applications. However, coordinating a team of autonomous vehicles to complete missions in an unknown and changing environment has been a challenging and complicated task. We modify the consensus-based auction algorithm (CBAA) so that it can dynamically reallocate tasks among autonomous vehicles that can flexibly find a path to reach multiple dynamic targets while avoiding unexpected obstacles and staying close as a group as possible simultaneously. We propose the core algorithms and simulate with many scenarios empirically to illustrate how the proposed framework works. Specifically, we show that how autonomous vehicles could reallocate the tasks among each other in finding dynamically changing paths while certain targets may appear and disappear during the movement mission. We also discuss some challenging problems as a future work.


2021 ◽  
Author(s):  
Karthikeyan Mayilvaganam ◽  
Anmol Shrivastava ◽  
Prabhu Rajagopal

2020 ◽  
Vol 10 (5) ◽  
pp. 1721
Author(s):  
Petar Ćurković ◽  
Lovro Čehulić

Path planning is present in many areas, such as robotics, video games, and unmanned autonomous vehicles. In the case of robots, it is a primary low-level prerequisite for the successful execution of high-level tasks. It is a known and difficult problem to solve, especially in terms of finding optimal paths for robots working in complex environments. Recently, population-based methods for multi-objective optimization, i.e., swarm and evolutionary algorithms successfully perform on different path planning problems. Knowing the nature of the problem is hard for optimization algorithms, it is expected that population-based algorithms might benefit from some kind of diversity maintenance implementation. However, advantages and potential traps of implementing specific diversity maintenance methods into the evolutionary path planner have not been clearly spelled out and experimentally demonstrated. In this paper, we fill this gap and compare three diversity maintenance methods and their impact on the evolutionary planner for problems of different complexity. Crowding, fitness sharing, and novelty search are tailored to fit specific problems, implemented, and tested for two scenarios: mobile robot operating in a 2D maze, and 3 degrees of freedom (DOF) robot operating in a 3D environment including obstacles. Results indicate that the novelty search outperforms the other two methods for problem domains of higher complexity.


Sign in / Sign up

Export Citation Format

Share Document