scholarly journals Wheel Slip Regulation Of Electrified Heavy Road Vehicles Using Regenerative Braking

2020 ◽  
Vol 53 (1) ◽  
pp. 422-427
Author(s):  
Kesavan Valis Subramaniyam ◽  
Shankar C. Subramanian
2015 ◽  
Vol 27 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Maxime Boisvert ◽  
◽  
Philippe Micheau ◽  
Didier Mammosser

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270003/02.jpg"" width=""340"" />Slip efficiency map & control law</div> A three-wheel hybrid recreational vehicle was studied for the purpose of regenerative braking control. In order to optimize the amount of energy recovered from electrical braking, most of the existing literature presents optimal methods which consist in defining the optimal braking torque as a function of vehicle speed. The originality of the present study is to propose a new strategy based on the control of rear wheel slip. A simulator based on MATLAB/Simulink and validated with experimental measurements compared the two strategies and their sensitivities to variations in mass, slope and road conditions. Numerical simulations and experimental tests show that regenerative braking based on a slip controller was less affected by the majority of the parametric changes. Moreover, since the slip was limited, the longitudinal stability of the vehicle was thereby improved. It thus becomes possible to ensure optimal energy recovery and vehicle stability even in instances of parametric uncertainties.


Author(s):  
Akhil Challa ◽  
K. B. Devika ◽  
Shankar C. Subramanian ◽  
Gunasekaran Vivekanandan ◽  
Sriram Sivaram

Abstract Wheel lock is an undesired phenomenon in Heavy Commercial Road Vehicles (HCRVs) and wheel slip control within a desired range is of crucial importance for stable and effective braking. This study proposes a framework to distribute brake force dynamically between the front and rear wheels, primarily to avoid instability by preventing wheel lock. Further, it ensures the maximum utilization of the available traction force at the tire-road interface that varies during the course of braking due to factors like load transfer. Wheel slip regulation provides an approach to maximize braking performance that subsumes the effects of varying road, load and braking conditions that occur during vehicle deceleration. The methodology proposed consists of a wheel slip controller that calculates the required brake force distribution parameters, which are then provided to the brake controller for control action. Sliding mode control was used because of the nonlinear nature of the longitudinal vehicle dynamic model considered and for robustness towards different parameter variations. The algorithm was implemented on a Hardware-in-Loop test setup consisting of a pneumatic air brake system, interfaced with IPG-TruckMaker® (a vehicle dynamic simulation software), and co-simulated with MATLAB-Simulink®. It was found that this algorithm improved the braking performance of a HCRV both in terms of stopping distance and vehicle stability.


Sign in / Sign up

Export Citation Format

Share Document