Simulated and Experimental Comparisons of Slip and Torque Control Strategies for Regenerative Braking in Instances of Parametric Uncertainties

2015 ◽  
Vol 27 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Maxime Boisvert ◽  
◽  
Philippe Micheau ◽  
Didier Mammosser

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270003/02.jpg"" width=""340"" />Slip efficiency map & control law</div> A three-wheel hybrid recreational vehicle was studied for the purpose of regenerative braking control. In order to optimize the amount of energy recovered from electrical braking, most of the existing literature presents optimal methods which consist in defining the optimal braking torque as a function of vehicle speed. The originality of the present study is to propose a new strategy based on the control of rear wheel slip. A simulator based on MATLAB/Simulink and validated with experimental measurements compared the two strategies and their sensitivities to variations in mass, slope and road conditions. Numerical simulations and experimental tests show that regenerative braking based on a slip controller was less affected by the majority of the parametric changes. Moreover, since the slip was limited, the longitudinal stability of the vehicle was thereby improved. It thus becomes possible to ensure optimal energy recovery and vehicle stability even in instances of parametric uncertainties.

2021 ◽  
Vol 11 (6) ◽  
pp. 2809
Author(s):  
Dongmin Zhang ◽  
Qiang Song ◽  
Guanfeng Wang ◽  
Chonghao Liu

This article proposes a novel longitudinal vehicle speed estimator for snowy roads in extreme conditions (four-wheel slip) based on low-cost wheel speed encoders and a longitudinal acceleration sensor. The tire rotation factor, η, is introduced to reduce the deviation between the rotation tire radius and the manufacturer’s marked tire radius. The Local Vehicle Speed Estimator is defined to eliminate longitudinal vehicle speed estimation error. It improves the tire slip accuracy of four-wheel slip, even with a high slip rate. The final vehicle speed is estimated using two fuzzy control strategies that use vehicle speed estimates from speed encoders and a longitudinal acceleration sensor. Experimental and simulation results confirm the algorithm’s validity for estimating longitudinal vehicle speed for four-wheel slip in snowy road conditions.


Vehicles ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 145-161
Author(s):  
Marius Heydrich ◽  
Vincenzo Ricciardi ◽  
Valentin Ivanov ◽  
Matteo Mazzoni ◽  
Alessandro Rossi ◽  
...  

This paper introduces a case study on the potential of new mechatronic chassis systems for battery electric vehicles, in this case a brake-by-wire (BBW) system and in-wheel propulsion on the rear axle combined with an integrated chassis control providing common safety features like anti-lock braking system (ABS), and enhanced functionalities, like torque blending. The presented controller was intended to also show the potential of continuous control strategies with regard to active safety, vehicle stability and driving comfort. Therefore, an integral sliding mode (ISM) and proportional integral (PI) control were used for wheel slip control (WSC) and benchmarked against each other and against classical used rule-based approach. The controller was realized in MatLab/Simulink and tested under real-time conditions in IPG CarMaker simulation environment for experimentally validated models of the target vehicle and its systems. The controller also contains robust observers for estimation of non-measurable vehicle states and parameters e.g., vehicle mass or road grade, which can have a significant influence on control performance and vehicle safety.


2014 ◽  
Vol 898 ◽  
pp. 873-877 ◽  
Author(s):  
Jian Wei Cai ◽  
Liang Chu ◽  
Zi Cheng Fu ◽  
Yan Bo Wang ◽  
Wen Hui Li

Based on the traditional hydraulic unit of ESC, Jilin University developed a braking energy recovery system of uniaxial decoupled. A first-order hysteresis filtering method with filtering time factor adaptively corrected was used to calculate driver's braking demand based on pressure of the master cylinder. A series of fixed partition coefficient control strategy was developed, coordinated control of electrical regenerative braking and hydraulic braking was carried out. Vehicle test was carried out. Vehicle test results show that the brake pedal travel simulator and the braking control strategies can improve the energy recovery, and ensure that the brake pedal feel is consistent with the traditional vehicle.


2019 ◽  
Vol 87 ◽  
pp. 01029
Author(s):  
Manish Kumar Dubey ◽  
Phaneendra Babu Bobba

In this paper PM BLDC motor driven electric two-wheeler is proposed. The operation of PMBLDC motor in all four quadrants along with various regenerative braking control strategies are simulated MATLAB/ SIMULINK. Three braking methods are proposed for electric vehicle application. Factors like recovered energy, braking time, maximum braking current are compared. Depending on the simulation results switching between different braking methods is proposed for efficient and reliable braking operation. Moreover, by using variable switch braking technique one can extract more braking energy.


1976 ◽  
Vol 190 (1) ◽  
pp. 233-244
Author(s):  
S. W. E. Earles ◽  
B. R. Aurora

SYNOPSIS Initially the vehicle response during braking is investigated with the aid of a mathematical model having a realistic road input. Using an integrated hybrid computer, the road-tyre characteristics are simulated by generating non-linear functions on the digital computer, while the mathematical model is described on the analogue computer with parallel logic facility. An adaptive braking control system is proposed which measures and processes the rear-wheel motion. Activation of the system occurs when the wheel deceleration and a quasi wheel slip reach given reference values. The adaptive system as developed and optimised on the hybrid computer is implemented on the rear wheels of the test vehicle. The predicted values of wheel speed, brake-pressure modulation, stopping distance and vehicle yaw are shown to compare favourably with the test results.


2012 ◽  
Vol 588-589 ◽  
pp. 1484-1489
Author(s):  
Tian Li Wang ◽  
Chang Hong Chen ◽  
Qing Jie Zhao ◽  
Ying Xiao Yu

Based on the analysis about the front and rear braking force distribution curve and the motor anti-drag braking characteristic, the Regenerative Braking Control Strategy which can maintain the capacity of the motor braking energy recovery and make the front and rear braking force distribution closer to the ideal distribution state is proposed. Create a control model. It is simulated by AVL-cruise. The results show that the new control strategies can improve the utilization of ground adhesion coefficient and braking stability.


Author(s):  
Feng Liu

Regenerative braking system is a system by which an energy conversion device is used to convert kinetic energy into electrical energy and store it in an energy storage device for use when the motor vehicle is driving. To improve the energy recovery rate of pure electric vehicles, a series regenerative braking control strategy based on PMSM fuzzy logic is proposed in this paper. According to this strategy, the motor braking shall be used as much as possible based on ensuring braking stability, 4 braking zones shall be divided according to the braking intensity, and different braking force distribution strategies shall be used, while comprehensively considering influencing factors such as vehicle speed, ECE regulations, battery, and motor characteristics. Simulink and Cruise are used for modeling and united simulation. The results show that the built model is accurate and reliable. The energy recovery rate can be improved effectively and the cruising range of pure electric vehicles can be extended based on proposed series regenerative braking control strategy.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879306 ◽  
Author(s):  
Li Gang ◽  
Yang Zhi

For four-wheel independently driven in-wheel motor electric vehicles, the four-wheel drive/braking torque can be controlled independently. Therefore, it has an advantage that energy saving control can be applied effectively. This article studies several energy saving control methods from two levels of driving and braking for four-wheel independently driven in-wheel motor electric vehicles under urban conditions based on the motor efficiency map. First, the energy saving control logic and the evaluation index were proposed in the article. The four-wheel drive torque was online optimized in real time through drive energy saving control, in order to improve the driving efficiency in the driving process of electric vehicles. According to the theory of ideal braking force distribution and Economic Commission of Europe braking regulations, the parallel regenerative braking control method based on the motor efficiency map was then studied. The parallel regenerative braking control method was applied to four-wheel independently driven in-wheel motor electric vehicles. The simulation analysis under typical urban driving cycle conditions was carried out to determine the braking intensity of the parallel brake front axle separate regenerative braking, and finally the braking energy recovery rate of electric vehicle can be improved in the low speed and low braking torque. Finally, simulation experiments have been carried out to verify the researched method under the NEDC, UDDS, and J1015 urban driving cycles. The simulation results show that the energy saving control methods have an obvious effect on energy saving under the urban driving cycle conditions.


2011 ◽  
Vol 148-149 ◽  
pp. 1231-1235
Author(s):  
Ji Shun Liu ◽  
Jun Li ◽  
Yong Sheng Zhang ◽  
Liang Chu ◽  
Liang Yao

As one of the key technologies of Hybrid Electronic Bus, regenerative braking technology can recover energy without changing the traditional bus braking habit. This is of vital importance in the research of regenerative braking system. Because the braking force distribution relationship between the front and rear axle of the vehicle has a remarkable influence in the braking stability,especially adding the regenerative braking force, the influence is even larger. So the anti-lock braking control strategy for the hybrid electronic vehicle is updated in this paper according to the condition of regenerative braking. The anti-lock braking control and regenerative braking control were integrated in one ECU (Electronic Control Unit) of braking control system, collecting signals of wheel rotate speed, vehicle speed, SOC and brake pedal position by CAN bus. And the output control commands are sent to the execution unit of anti-lock braking system and regenerative braking system. The effectiveness of energy regeneration and the braking stability of this strategy are tested on the off-line simulation platform.


Sign in / Sign up

Export Citation Format

Share Document