scholarly journals Metzler matrix-based switching control scheme for linear systems with prescribed performance guarantees

2020 ◽  
Vol 53 (2) ◽  
pp. 6428-6433
Author(s):  
Zongyi Guo ◽  
David Henry ◽  
Jianguo Guo ◽  
Zheng Wang ◽  
Jérôme Cieslak ◽  
...  
Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.


Automatica ◽  
2017 ◽  
Vol 84 ◽  
pp. 190-198 ◽  
Author(s):  
Chang Tan ◽  
Gang Tao ◽  
Ruiyun Qi ◽  
Hui Yang

Author(s):  
Bo Zhu ◽  
Kai-Yuan Cai

In the paper, we show that for a class of linear plants, although the common linear control can be used to stabilize them, the step responses of the resulting closed-loop systems must have overshoot; however, a simple switching between them may avoid the overshoot. This indicates that switching control may overcome the performance limitation of linear feedback control in the overshoot-avoidance respect. A simple switching control scheme with such a quality is exploited and the conditions for its existence are presented. In the scheme, two common controllers are needed and they are only required to guarantee no overshoot on the time intervals [0, ts) and [ts, ∞), respectively, where ts denotes the switching time. For actual implementation, a state-dependent version of the switching control law is developed. Two examples are presented to show its effectiveness.


Author(s):  
Yuanhui Wang ◽  
Haibin Wang ◽  
Mingyu Fu

This paper investigates concentrates on the trajectory tracking control problem of dynamic positioning (DP) ship, in the presence of the time-varying disturbance and input saturation. Firstly, a simplified mathematical model of three degrees of freedom is established. According to the characteristics of the DP ship, an adaptive backstepping controller which combine the prescribed performance function with disturbance observer is proposed. The control scheme can guarantee the transient and steady state performance of the trajectory tracking and meet the prescribed performance criteria. In addition, an auxiliary dynamic system is introduced into the controller to deal with the input saturation problem of the actuator, so that the DP ship can accomplish the task of trajectory tracking under the condition of actuator constraint. Subsequently, in combination of barrier Lyapunov function (BLF), it is proved that the DP system can stabilize and converge rapidly to the small neighborhood of the equilibrium point, which can achieve the prescribed performance. Finally, the effectiveness of the DP control law is demonstrated by a series of simulation experiments.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Zhonghua Wu ◽  
Jingchao Lu ◽  
Jingping Shi ◽  
Yang Liu ◽  
Qing Zhou

This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs) be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP) technique, prescribed performance control, and a kind of smooth switching strategy into back-stepping design, a new composite switching adaptive neural prescribed performance control scheme is proposed and a new type of adaptive laws is constructed for the altitude subsystem. Compared with previous neural control scheme for flight vehicle, the remarkable feature is that the proposed controller not only achieves the prescribed performance including transient and steady property but also addresses the constraint on NN. Two comparative simulations are presented to verify the effectiveness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document