Nano-fluid thermal processing of watermelon juice in a shell and tube heat exchanger and evaluating its qualitative properties

2017 ◽  
Vol 42 ◽  
pp. 173-179 ◽  
Author(s):  
Seid Mahdi Jafari ◽  
Farinaz Saremnejad ◽  
Danial Dehnad

Nanoparticles and nano-fluids are having its significant role in transforming and improvising the existing tools and techniques of science and other research. This experimental study deals with the parametric analysis of Al2O3 of size 20-30 nm and CuO of size 30-50 nm nanoparticles to improve the effectiveness of a shell and tube heat exchanger. Nanoparticles used in heat exchangers improved performance through better heat transfer characteristics. An experimental investigation was done on the forced convective heat transfer and flow characteristics of the nano-fluid flowing in a horizontal shell and tube heat exchanger under turbulent flow conditions. The heat transfer of nano-fluid is found higher than that of the base liquid at same mass flow rate and temperature difference. The heat transfer thus heat transfer parameters increases with an increase in volume concentration up to 1.6 % after which heat transfer decreases due to viscosity effects.


Author(s):  
Mrs. D Swetha ◽  
Mr. K. Srinivasa Chalapathi ◽  
Mrs. P. Saritha ◽  

Author(s):  
Leonardo Cavalheiro Martinez ◽  
Leonardo Cavalheiro Martinez ◽  
Viviana Mariani ◽  
Marcos Batistella Lopes

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


Sign in / Sign up

Export Citation Format

Share Document