scholarly journals Probing dimer interface stabilization within a four-helix bundle of the GrpE protein from Escherichia coli via internal deletion mutants: Conversion of a dimer to monomer

2011 ◽  
Vol 48 (4) ◽  
pp. 627-633 ◽  
Author(s):  
Andrew F. Mehl ◽  
Nalin U.G. ◽  
Zohair Ahmed ◽  
Aaron Wells ◽  
Tilemahos D. Spyratos
2004 ◽  
Vol 279 (19) ◽  
pp. 20511-20518 ◽  
Author(s):  
Sheng Ye ◽  
Ioannis Vakonakis ◽  
Thomas R. Ioerger ◽  
Andy C. LiWang ◽  
James C. Sacchettini

The circadian clock found inSynechococcus elongatus, the most ancient circadian clock, is regulated by the interaction of three proteins, KaiA, KaiB, and KaiC. While the precise function of these proteins remains unclear, KaiA has been shown to be a positive regulator of the expression of KaiB and KaiC. The 2.0-Å structure of KaiA ofS. elongatusreported here shows that the protein is composed of two independently folded domains connected by a linker. The NH2-terminalpseudo-receiver domain has a similar fold with that of bacterial response regulators, whereas the COOH-terminal four-helix bundle domain is novel and forms the interface of the 2-fold-related homodimer. The COOH-terminal four-helix bundle domain has been shown to contain the KaiC binding site. The structure suggests that the KaiB binding site is covered in the dimer interface of the KaiA “closed” conformation, observed in the crystal structure, which suggests an allosteric regulation mechanism.


2003 ◽  
Vol 12 (6) ◽  
pp. 1205-1215 ◽  
Author(s):  
Andrew F. Mehl ◽  
Luke D. Heskett ◽  
Sumesh S. Jain ◽  
Borries Demeler

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shin Irumagawa ◽  
Kaito Kobayashi ◽  
Yutaka Saito ◽  
Takeshi Miyata ◽  
Mitsuo Umetsu ◽  
...  

AbstractThe stability of proteins is an important factor for industrial and medical applications. Improving protein stability is one of the main subjects in protein engineering. In a previous study, we improved the stability of a four-helix bundle dimeric de novo protein (WA20) by five mutations. The stabilised mutant (H26L/G28S/N34L/V71L/E78L, SUWA) showed an extremely high denaturation midpoint temperature (Tm). Although SUWA is a remarkably hyperstable protein, in protein design and engineering, it is an attractive challenge to rationally explore more stable mutants. In this study, we predicted stabilising mutations of WA20 by in silico saturation mutagenesis and molecular dynamics simulation, and experimentally confirmed three stabilising mutations of WA20 (N22A, N22E, and H86K). The stability of a double mutant (N22A/H86K, rationally optimised WA20, ROWA) was greatly improved compared with WA20 (ΔTm = 10.6 °C). The model structures suggested that N22A enhances the stability of the α-helices and N22E and H86K contribute to salt-bridge formation for protein stabilisation. These mutations were also added to SUWA and improved its Tm. Remarkably, the most stable mutant of SUWA (N22E/H86K, rationally optimised SUWA, ROSA) showed the highest Tm (129.0 °C). These new thermostable mutants will be useful as a component of protein nanobuilding blocks to construct supramolecular protein complexes.


2009 ◽  
Vol 48 (15) ◽  
pp. 2749-2751 ◽  
Author(s):  
Brooke A. Rosenzweig ◽  
Andrew D. Hamilton

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Erik H. Klontz ◽  
Adam D. Tomich ◽  
Sebastian Günther ◽  
Justin A. Lemkul ◽  
Daniel Deredge ◽  
...  

ABSTRACT Fosfomycin exhibits broad-spectrum antibacterial activity and is being reevaluated for the treatment of extensively drug-resistant pathogens. Its activity in Gram-negative organisms, however, can be compromised by expression of FosA, a metal-dependent transferase that catalyzes the conjugation of glutathione to fosfomycin, rendering the antibiotic inactive. In this study, we solved the crystal structures of two of the most clinically relevant FosA enzymes: plasmid-encoded FosA3 from Escherichia coli and chromosomally encoded FosA from Klebsiella pneumoniae (FosAKP). The structure, molecular dynamics, catalytic activity, and fosfomycin resistance of FosA3 and FosAKP were also compared to those of FosA from Pseudomonas aeruginosa (FosAPA), for which prior crystal structures exist. E. coli TOP10 transformants expressing FosA3 and FosAKP conferred significantly greater fosfomycin resistance (MIC, >1,024 μg/ml) than those expressing FosAPA (MIC, 16 μg/ml), which could be explained in part by the higher catalytic efficiencies of the FosA3 and FosAKP enzymes. Interestingly, these differences in enzyme activity could not be attributed to structural differences at their active sites. Instead, molecular dynamics simulations and hydrogen-deuterium exchange experiments with FosAKP revealed dynamic interconnectivity between its active sites and a loop structure that extends from the active site of each monomer and traverses the dimer interface. This dimer interface loop is longer and more extended in FosAKP and FosA3 than in FosAPA, and kinetic analyses of FosAKP and FosAPA loop-swapped chimeric enzymes highlighted its importance in FosA activity. Collectively, these data yield novel insights into fosfomycin resistance that could be leveraged to develop new strategies to inhibit FosA and potentiate fosfomycin activity.


2018 ◽  
Vol 115 (12) ◽  
pp. 3042-3047 ◽  
Author(s):  
Maria Luisa Lopez-Redondo ◽  
Nicolas Coudray ◽  
Zhening Zhang ◽  
John Alexopoulos ◽  
David L. Stokes

YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Thomas J. Magliery ◽  
Jason J. Lavinder ◽  
Sanjay B. Hari ◽  
Chau Nguyen ◽  
Shila Sen

Sign in / Sign up

Export Citation Format

Share Document