scholarly journals Cloning and restriction mapping of the alkaline phosphatase structural gene (phoA) of Escherichia coli and generation of deletion mutants in vitro.

1981 ◽  
Vol 146 (2) ◽  
pp. 668-675 ◽  
Author(s):  
H Inouye ◽  
S Michaelis ◽  
A Wright ◽  
J Beckwith
1975 ◽  
Vol 53 (7) ◽  
pp. 819-822 ◽  
Author(s):  
A. R. Bhatti

A mutant strain of Serratia marcescens produces a constitutive enzyme (phosphatase F) which differs from the alkaline phosphatase of Escherichia coli in the following characteristics: one enzyme species with higher mobility on electrophoresis, less heat stability, no rapid reactivation following exposure to high hydrogen ion concentrations, no hybridization with E. coli enzyme in vitro, little activation at increased ionic strength, greater sensitivity to EDTA inhibition, and no cross reaction of rabbit anti-serum with the E. coli enzyme.


1982 ◽  
Vol 152 (2) ◽  
pp. 692-701
Author(s):  
M Amemura ◽  
H Shinagawa ◽  
K Makino ◽  
N Otsuji ◽  
A Nakata

The regulatory genes of alkaline phosphatase, phoS and phoT, of Escherichia coli were cloned on pBR322, initially as an 11.8-kilobase EcoRI fragment. A restriction map of the hybrid plasmid was established. Deletion plasmids of various sizes were constructed in vitro, and the presence of phoS and phoT genes on the cloned DNA fragments was tested by introducing the plasmids into phoS64 and phoT9 strains for complementation tests. One set complemented only phoS64 but not phoT9; the other set complemented only phoT9 but not phoS64. We conclude that phoS64 and phoT9 mutations belong to different complementation groups and probably to different cistrons. The hybrid plasmid with the 11.8-kilobase chromosomal fragment also complemented the phoT35 mutation. A smaller derivative of the hybrid plasmid was constructed in vitro which complemented phoT35 but did not complement phoS64, phoT9, or pst-2. Our results agree with the suggestion that phoT35 lies in a different complementation group from phoS, phoT, or pst-2 (Zuckier and Torriani, J. Bacteriol. 145:1249--1256, 1981). Therefore, we propose to designate phoT35 as phoU. The effect of amplification of phoS or phoT on alkaline phosphatase production was examined. It was found that multiple copies of the phoS gene borne on pBR322 repressed enzyme production even in low-phosphate medium, whether it was introduced into wild-type strains (partially repressed) or phoR (phoR68 or phoR17) strains (fully repressed), whereas the introduction of multicopy plasmids bearing the phoT gene did not affect the inducibility of the enzyme.


2008 ◽  
Vol 76 (5) ◽  
pp. 2106-2112 ◽  
Author(s):  
Koushik Roy ◽  
David Hamilton ◽  
Kenneth P. Allen ◽  
Mildred P. Randolph ◽  
James M. Fleckenstein

ABSTRACT The enterotoxigenic Escherichia coli (ETEC) strains are major causes of morbidity and mortality due to diarrheal illness in developing countries. At present, there is no broadly protective vaccine for this diverse group of pathogens. The EtpA protein, identified in ETEC H10407 in a recent search for candidate immunogens, is a large glycosylated exoprotein secreted via two-partner secretion (TPS). Similar to structurally related molecules, EtpA functions in vitro as an adhesin. The studies reported here use a recently developed murine model of ETEC intestinal colonization to examine the immunogenicity and protective efficacy of EtpA. We report that mice repeatedly exposed to ETEC are protected from subsequent colonization and that they mount immune responses to both EtpA and its presumed two-partner secretion transporter (EtpB) during the course of experimental infection. Furthermore, isogenic etpA deletion mutants were impaired in the colonization of mice, and intranasal immunization of mice with recombinant EtpA conferred protection against ETEC H10407 in this model. Together, these data suggest that EtpA is required for optimal colonization of the intestine, findings paralleling those of previous in vitro studies demonstrating its role in adherence. EtpA and other TPS proteins may be viable targets for ETEC vaccine development.


2005 ◽  
Vol 73 (12) ◽  
pp. 8411-8417 ◽  
Author(s):  
Olivier Marchés ◽  
Siouxsie Wiles ◽  
Francis Dziva ◽  
Roberto M. La Ragione ◽  
Stephanie Schüller ◽  
...  

ABSTRACT Intestinal colonization by enteropathogenic and enterohemorrhagic Escherichia coli requires the locus of enterocyte effacement-encoded type III secretion system. We report that NleC and NleD are translocated into host cells via this system. Deletion mutants induced attaching and effacing lesions in vitro, while infection of calves or lambs showed that neither gene was required for colonization.


Sign in / Sign up

Export Citation Format

Share Document