2,2,2-Trifluoroethanol disrupts the triple helical structure and self-association of type I collagen

2013 ◽  
Vol 54 ◽  
pp. 155-159 ◽  
Author(s):  
Ganesh Shanmugam ◽  
Samala Murali Mohan Reddy ◽  
Venkatachalam Natarajan ◽  
Balaraman Madhan
1998 ◽  
Vol 53 (5-6) ◽  
pp. 383-388 ◽  
Author(s):  
V. Renugopalakrishnan ◽  
L. A. Carreira ◽  
T. W. Collette ◽  
J. C. Dobbs ◽  
G. Chandraksasan ◽  
...  

The individual chains in the triple helix of collagen occur in a conformation related to polyproline II because of the presence of large number of imino peptide bonds. However, these residues are not evenly distributed in the collagen molecule which also contains many non-imino residues. These non-imino regions of collagen may be expected to show preference for other than triple helical conformations. The appearance of several Raman bands in solution phase at 65 °C raises the possibility of non-uniform triple helical structure in collagen. Raman spectroscopic studies on collagen in the solid state and in solution at a temperature greater than its denaturation temperature, reported here suggest that denatured collagen may exhibit an ensemble of conformational states with yet unknown implications to the biochemical interactions of this important protein component of connective tissues.


2015 ◽  
Vol 293 (9) ◽  
pp. 2655-2662 ◽  
Author(s):  
Meenatchi Sundaram Saravanan ◽  
Jayaraman Jayamani ◽  
Ganesh Shanmugam ◽  
Balaraman Madhan

Glycobiology ◽  
2020 ◽  
Vol 30 (10) ◽  
pp. 830-843
Author(s):  
Ming Tang ◽  
Xiaocong Wang ◽  
Neha S Gandhi ◽  
Bethany Lachele Foley ◽  
Kevin Burrage ◽  
...  

Abstract Collagen undergoes many types of post-translational modifications (PTMs), including intracellular modifications and extracellular modifications. Among these PTMs, glycosylation of hydroxylysine (Hyl) is the most complicated. Experimental studies demonstrated that this PTM ceases once the collagen triple helix is formed and that Hyl-O-glycosylation modulates collagen fibrillogenesis. However, the underlying atomic-level mechanisms of these phenomena remain unclear. In this study, we first adapted the force field parameters for O-linkages between Hyl and carbohydrates and then investigated the influence of Hyl-O-glycosylation on the structure of type I collagen molecule, by performing comprehensive molecular dynamic simulations in explicit solvent of collagen molecule segment with and without the glycosylation of Hyl. Data analysis demonstrated that (i) collagen triple helices remain in a triple-helical structure upon glycosylation of Hyl; (ii) glycosylation of Hyl modulates the peptide backbone conformation and their solvation environment in the vicinity and (iii) the attached sugars are arranged such that their hydrophilic faces are well exposed to the solvent, while their hydrophobic faces point towards the hydrophobic portions of collagen. The adapted force field parameters for O-linkages between Hyl and carbohydrates will aid future computational studies on proteins with Hyl-O-glycosylation. In addition, this work, for the first time, presents the detailed effect of Hyl-O-glycosylation on the structure of human type I collagen at the atomic level, which may provide insights into the design and manufacture of collagenous biomaterials and the development of biomedical therapies for collagen-related diseases.


Author(s):  
Ezequiel Coscueta ◽  
María Emilia Brassesco ◽  
Manuela Pintado

Collagen is the most abundant protein in the animal kingdom. Industrial collagen is mainly bovine and porcine origin. However, due to religious beliefs, allergic issues, and infectious diseases, alternative sources of collagen as marine are gaining increasing interest. In this work, the acid-soluble collagen (ASC) were extracted from salt-cured Atlantic cod (Gadus morhua) skin and characterized. The extraction yield was about 2.0%, equivalent to the extraction yield reported for other fish skins. The electrophoretic pattern showed the typical type I structure (α, β and γ chains). UV-VIS and FTIR absorbance spectra suggested a very pure ASC with an intact triple helical structure. The integrity and the adequate porosity required for different applications were then confirmed by electron micrograph. Our findings allow us to say that, for the first time, we extracted acid-soluble type I collagen from salt-cured Atlantic cod skin, with characteristics suitable for application in various fields, such as biomedical.


1982 ◽  
Vol 95 (3) ◽  
pp. 752-756 ◽  
Author(s):  
B D Goldberg ◽  
R E Burgeson

Unlabeled collagenous proteins were quantified as inhibitors of binding of native, soluble, radioiodinated type I collagen to the fibroblast surface. Collagen types IV, V a minor cartilage isotype (1 alpha 2 alpha 3 alpha), and the collagenlike tail of acetylcholinesterase did not inhibit binding. Collagen types II and III behaved as competitive inhibitors of type I binding. Denaturation of native collagenous molecules exposed cryptic inhibitory determinants in the separated constituent alpha chains. Inhibition of binding by unlabeled type I collagen was not changed by enzymatic removal of the telopeptides. Inhibitory determinants were detected in cyanogen bromide-derived peptides from various regions of helical alpha 1 (I) and alpha 1(III) chains. The aminoterminal propeptide of chick pro alpha 1(I) was inhibitory for binding, whereas the carboxyterminal three-chain propeptide fragment of human type I procollagen was not. The data are discussed in terms of the proposal that binding to surface receptors initiates the assembly of periodic collagen fibrils in vivo.


2012 ◽  
Vol 52 ◽  
pp. 113-133 ◽  
Author(s):  
Mitsuo Yamauchi ◽  
Marnisa Sricholpech

Type I collagen is the most abundant structural protein in vertebrates. It is a heterotrimeric molecule composed of two α1 chains and one α2 chain, forming a long uninterrupted triple helical structure with short non-triple helical telopeptides at both the N- and C-termini. During biosynthesis, collagen acquires a number of post-translational modifications, including lysine modifications, that are critical to the structure and biological functions of this protein. Lysine modifications of collagen are highly complicated sequential processes catalysed by several groups of enzymes leading to the final step of biosynthesis, covalent intermolecular cross-linking. In the cell, specific lysine residues are hydroxylated to form hydroxylysine. Then specific hydroxylysine residues located in the helical domain of the molecule are glycosylated by the addition of galactose or glucose-galactose. Outside the cell, lysine and hydroxylysine residues in the N- and C-telopeptides can be oxidatively deaminated to produce reactive aldehydes that undergo a series of non-enzymatic condensation reactions to form covalent intra- and inter-molecular cross-links. Owing to the recent advances in molecular and cellular biology, and analytical technologies, the biological significance and molecular mechanisms of these modifications have been gradually elucidated. This chapter provides an overview on these enzymatic lysine modifications and subsequent cross-linking.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 462 ◽  
Author(s):  
Wang ◽  
Yu ◽  
Sun ◽  
Liu ◽  
Zhou

Acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the skin of river puffer (ASC-RP and PSC-RP) and tiger puffer (ASC-TP and PSC-TP) were extracted and physicochemically examined. Denaturation temperature (Td) for all the collagens was found to be 25.5–29.5 °C, which was lower than that of calf skin collagen (35.9 °C). Electrophoretic patterns indicated all four samples were type I collagen with molecular form of (α1)2α2. FTIR spectra confirmed the extracted collagens had a triple-helical structure, and that the degree of hydrogen bonding in ASC was higher than PSC. All the extracted collagens could aggregate into fibrils with D-periodicity. The fibril formation rate of ASC-RP and PSC-RP was slightly higher than ASC-TP and PSC-TP. Turbidity analysis revealed an increase in fibril formation rate when adding a low concentration of NaCl (less than 300 mM). The fibril formation ability was suppressed with further increasing of NaCl concentration, as illustrated by a reduction in the turbidity and formation degree. SEM analysis confirmed the well-formed interwoven structure of collagen fibrils after 24 h of incubation. Summarizing the experimental results suggested that the extracted collagens from the skin of river puffer and tiger puffer could be considered a viable substitute to mammalian-derived collagens for further use in biomaterial applications.


Sign in / Sign up

Export Citation Format

Share Document