Application of nanocompostie chitosan and carboxymethyl cellulose films containing natural preservative compounds in minced camel’s meat

2018 ◽  
Vol 106 ◽  
pp. 1146-1158 ◽  
Author(s):  
Ali Khezrian ◽  
Yasser Shahbazi
2020 ◽  
Vol 250 ◽  
pp. 116911 ◽  
Author(s):  
Humayun Nadeem ◽  
Mahdi Naseri ◽  
Kirubanandan Shanmugam ◽  
Mostafa Dehghani ◽  
Christine Browne ◽  
...  

2020 ◽  
Vol 138 (13) ◽  
pp. 50092
Author(s):  
Jie Wei ◽  
Shuai Jia ◽  
Lu Zhang ◽  
Yi Zhou ◽  
Yanyan Lv ◽  
...  

2019 ◽  
Vol 32 (1) ◽  
pp. 68-78 ◽  
Author(s):  
Safaa A. Laith ◽  
Alaa G. Al-Hashimi

This study was conducted to extract cellulose and synthesis  carboxymethyl cellulose from flour bran. Fourier Transform Infrared Spectrometer (FT-IR) was used to confirm the existent of the carboxymethyl group. The sample edible films were  prepared using 1, 2, 3, and 4 % CMC, and two types of plasticizers glycerol and  sorbitol, (20, 40 and 60) %. Their qualitative, mechanical, reservation and thermal characteristics were studied. Tensile strength ranged 28-51.3 MPa and elongation percentage ranged between 65.5-91.0 %. The thickness of simple cellulose films were 0.018-0.078 mm. The values of solubility (19.05-36.31%) and the permeability values  of simple cellulose film increased with the increasing of the plasticized ratio.  The highest permeability was 11.99 g.mm/m2.h.kp at 60% glycerol and thermogravimetric analysis for some simple cellulose film plasticized by glycerol were 135, 146.29, 125 and123.23° C.


2019 ◽  
Vol 19 (6) ◽  
pp. 3544-3550 ◽  
Author(s):  
Jutamas Ampaiwong ◽  
Pranee Rattanawaleedirojn ◽  
Kanokwan Saengkiettiyut ◽  
Nadnudda Rodthongkum ◽  
Pranut Potiyaraj ◽  
...  

Herein, carboxymethyl cellulose nanocomposite films incorporated with graphene oxide and reduced graphene oxide were successfully prepared by a novel approach for the first time, and their alternative properties compared with the original carboxymethyl cellulose films were disclosed. For carboxymethyl cellulose/reduced graphene oxide film preparation, sodium borohydride was used as a chemical reducing agent. The carboxymethyl cellulose films were prepared by using a solvent casting method, followed by an acid treatment to decrease the water solubility (98%) while enhancing the tensile strength (15%) and elastic modulus (32%) of the original carboxymethyl cellulose films. Overall, the addition of 1.0 wt% graphene oxide and reduced graphene oxide to the treated films increased the water solubility, water absorption, tensile properties and electrical conductivity. Particularly, the electrical conductivity was predominantly enhanced 1.3×105 times with graphene oxide and 2.2×105 times with reduced graphene oxide compared to the treated carboxymethyl cellulose film. The electrical conductivity of the treated carboxymethyl cellulose film also increased with an increase in reduced graphene oxide. The effects of reduced graphene oxide on the water solubility, water absorption, tensile properties and electrical conductivity of the treated carboxymethyl cellulose film were more pronounced than those of graphene oxide, especially for the electrical conductivity. In conclusion, graphene oxide and reduced graphene oxide might be alternative nanofillers for improving the carboxymethyl cellulose film properties. For the future applications, carboxymethyl cellulose/reduced graphene oxide films prepared by using this approach might be employed as alternative materials in electronic packagings and electrochemical biosensors.


Sign in / Sign up

Export Citation Format

Share Document