scholarly journals Mechanical Properties of Carboxymethyl Cellulose Edible Films

2019 ◽  
Vol 32 (1) ◽  
pp. 68-78 ◽  
Author(s):  
Safaa A. Laith ◽  
Alaa G. Al-Hashimi

This study was conducted to extract cellulose and synthesis  carboxymethyl cellulose from flour bran. Fourier Transform Infrared Spectrometer (FT-IR) was used to confirm the existent of the carboxymethyl group. The sample edible films were  prepared using 1, 2, 3, and 4 % CMC, and two types of plasticizers glycerol and  sorbitol, (20, 40 and 60) %. Their qualitative, mechanical, reservation and thermal characteristics were studied. Tensile strength ranged 28-51.3 MPa and elongation percentage ranged between 65.5-91.0 %. The thickness of simple cellulose films were 0.018-0.078 mm. The values of solubility (19.05-36.31%) and the permeability values  of simple cellulose film increased with the increasing of the plasticized ratio.  The highest permeability was 11.99 g.mm/m2.h.kp at 60% glycerol and thermogravimetric analysis for some simple cellulose film plasticized by glycerol were 135, 146.29, 125 and123.23° C.

2018 ◽  
Vol 21 (1) ◽  
pp. 147 ◽  
Author(s):  
Sihama I. Salih ◽  
Qahtan A. Hamad ◽  
Safaa N. Abdul Jabbar ◽  
Najat H. Sabit

This work covers mixing of unsaturated polyester (un- polyester) with starch powders as polymer blends and study the effects of irradiation by UV-acceleration on mechanical properties of its. The unsaturated polyester was mixing by starch powders at particle size less than (45 µm) at selected weight fraction of (0, 0.5, 1, 1.5, 2, 2.5 and 3%). These properties involve ultimate tensile strength, modulus of elasticity, elongation percentage, flexural modulus, flexural strength, fracture toughness, impact strength and hardness. The results illustrate decrease in the ultimate tensile strength at and elongation percentage, while increasing modulus of elasticity, with increasing the weight ratio of starch powder to 3 % weight fraction, whereas the maximum value of hardness and flexural, impact properties happened at 1 % weight fraction for types of polymer blends.


Polyurethanes ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
P. Ross ◽  
G. Sevilla ◽  
J. Quagliano

AbstractPolyurethane formulations utilized as liners for composite propellants were prepared by the reaction of toluene-2,4-diisocyanate (TDI) and isophorone diisocyanate (IPDI) with hydroxyl terminated polybutadiene (HTPB), while polymer chains were further extended with neopentyl glycol diol, NPG triol and two different triols (monoglyceryl ricinoleate, MRG and trimethylolpropane, TMP). Liners were formulated with micronized titanium dioxide mechanically dispersed in hydroxyl-terminated polybutadiene (HTPB). The molecular structures of liners were confirmed by FT-IR. Thermal properties indicated that the nature of chain extender (crosslinker) only slightly affected the temperatures for decomposition of liners. Two main thermal changes were found at 370∘C and another at around 440–500∘C, depending on the chain extender utilized. On the other side, mechanical properties varied within the range of 0,7-1,8 MPa, consistent with this kind of elastomers. Tensile strength at break was only significantly affected with TMP and MRG-chain extended liners at the lowest concentrations tested of 1,3 and 2% (w/w), respectively. However, the behaviour depended on whether TDI or IPDI isocyanate was utilized for curing. TMP 1,3% crosslinked liner cured with TDI had a tensile strength of 1,82MPa whileMRG-crosslinked liner cured with IPDI had a tensile strength of 1,56 MPa. It was observed that at the higher NCO/OH ratios essayed, tensile strength and hardness increased, improving mechanical properties. Our results confirmed that TMP and MRG triols together with NPG diols can be used to tailor mechanical and thermal properties of liners, considering their different hydroxyl functionalities and chain lengths.


2012 ◽  
Vol 200 ◽  
pp. 347-350
Author(s):  
Wei He ◽  
Qing Hong Fang ◽  
Wei Lin ◽  
A.S. Luyt ◽  
Tie Jun Ge

Anti-fog films of low density polyethylene (LDPE) modified with micrometer diatomite were prepared by a process of blow molding. Through examination of antifogging property of the film added the anti-fog agents, the modification effectiveness of inorganic micrometer diatomite and the influence of different treating agents were studied with Fourier transform infrared spectrometer (FTIR), mechanical properties, and antifogging performances. The results indicate that the anti-fog property of the film can be improved by premixing inorganic micrometer diatomite with the anti-fog agents; the film modified by inorganic micrometer diatomite added surface treatment agent has obviously effectiveness anti-fog properties than that the films modified only by the anti-fog agents. Addition of polyacrylamide can make the anti-fog durability of the films modified by inorganic micrometer diatomite be further prolonged. It was observed that the tensile strength does not show any decrease, however, elongation at break show a massive decreased.


2019 ◽  
Vol 19 (6) ◽  
pp. 3544-3550 ◽  
Author(s):  
Jutamas Ampaiwong ◽  
Pranee Rattanawaleedirojn ◽  
Kanokwan Saengkiettiyut ◽  
Nadnudda Rodthongkum ◽  
Pranut Potiyaraj ◽  
...  

Herein, carboxymethyl cellulose nanocomposite films incorporated with graphene oxide and reduced graphene oxide were successfully prepared by a novel approach for the first time, and their alternative properties compared with the original carboxymethyl cellulose films were disclosed. For carboxymethyl cellulose/reduced graphene oxide film preparation, sodium borohydride was used as a chemical reducing agent. The carboxymethyl cellulose films were prepared by using a solvent casting method, followed by an acid treatment to decrease the water solubility (98%) while enhancing the tensile strength (15%) and elastic modulus (32%) of the original carboxymethyl cellulose films. Overall, the addition of 1.0 wt% graphene oxide and reduced graphene oxide to the treated films increased the water solubility, water absorption, tensile properties and electrical conductivity. Particularly, the electrical conductivity was predominantly enhanced 1.3×105 times with graphene oxide and 2.2×105 times with reduced graphene oxide compared to the treated carboxymethyl cellulose film. The electrical conductivity of the treated carboxymethyl cellulose film also increased with an increase in reduced graphene oxide. The effects of reduced graphene oxide on the water solubility, water absorption, tensile properties and electrical conductivity of the treated carboxymethyl cellulose film were more pronounced than those of graphene oxide, especially for the electrical conductivity. In conclusion, graphene oxide and reduced graphene oxide might be alternative nanofillers for improving the carboxymethyl cellulose film properties. For the future applications, carboxymethyl cellulose/reduced graphene oxide films prepared by using this approach might be employed as alternative materials in electronic packagings and electrochemical biosensors.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Hongwang Ma ◽  
Qi Ma

This research investigated the use of sodium carboxymethyl cellulose (CMC) as a reinforcement to improve mechanical properties of loess soil found in northwestern China. The mechanical properties of loess were determined by unconfined compressive strength and split tensile strength tests. Three different contents of CMC were adopted: 0.5%, 1.0%, and 1.5%. The results showed that utilizing CMC reduced the maximum dry density of the loess. The compressive strength, tensile strength, and Young’s modulus are enough to construct low-rise buildings when the CMC content exceeds 1.0%, based on existing standards. This research thus provides a prospective sustainability method for loess stabilization.


2018 ◽  
Vol 929 ◽  
pp. 186-190 ◽  
Author(s):  
M.N. Chai ◽  
M.M. Chai ◽  
M.I.N. Isa

In this paper, the mechanical properties of carboxymethyl cellulose-oleic acid (CMC-OA) solid bio-polymer electrolyte (SBE) were examined. The host, CMC was doped with different weight percentage (wt. %) of OA in the CMC-OA solution. The SBEs were tested by using the Universal Material Testing Machine where the readings of tensile strength and Young’s modulus can be obtained from the stress-strain curve produced by the software during the tension test. The sample of CMC doped with 20% wt. of OA was found to obtain the highest value of tensile strength and Young’s modulus which is 0.2069 MPa and 4.615 MPa respectively.


2011 ◽  
Vol 197-198 ◽  
pp. 1306-1309 ◽  
Author(s):  
Feng Yuan Huang ◽  
Yan Yu ◽  
Xiao Jie Wu

Cellulose Oleate (CO) was synthesized by acylating cellulose in homogeneous system with p-toluenesulfonyl chloride (Tos-Cl) and oleic acid. The structure of CO was characterized by FT-IR, and degree of substitution (DS) of CO was determined by saponification method. Substituent distribution analysis was carried out with curve-fitting method, and the results indicated that acyl reaction of cellulose with oleic acid preferred to react at primary hydroxyl groups. The CO converted into films by casting. The mechanical properties of CO films were investigated. With the increase of DS, the tensile strength decreases gradually, but the tensile strain increases apparently.


Sign in / Sign up

Export Citation Format

Share Document