Nature derived scaffolds for tissue engineering applications: Design and fabrication of a composite scaffold incorporating chitosan-g-d,l-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf

2018 ◽  
Vol 110 ◽  
pp. 504-513 ◽  
Author(s):  
Sung Won Ko ◽  
Juan Paolo E. Soriano ◽  
Ji Yeon Lee ◽  
Afeesh Rajan Unnithan ◽  
Chan Hee Park ◽  
...  
2011 ◽  
Vol 418-420 ◽  
pp. 303-306
Author(s):  
Xue Jun Wang ◽  
Tao Lou ◽  
Guo Jun Song

In this study, a nano-fibrous PLLA scaffold with hierarchical pore was sucessfully fabricated using combined TIPS and particle leaching method.The scaffold had a nano-fibrous PLLA matrix (fiber size 100-800 nm), an interconnective hierarchical pores (1.0- 425 μm), high porosity (>96%). The compressive modulus of scaffold with different pore size was between 0.16 MPa to 0.2 Mpa and it decreased with the increased salt size embedded in. The new nano composite scaffold is potentially a very promising scaffold for tissue engineering.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1962 ◽  
Author(s):  
Abdullah M. Cakmak ◽  
Semra Unal ◽  
Ali Sahin ◽  
Faik N. Oktar ◽  
Mustafa Sengor ◽  
...  

Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (~300 µm) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engineering applications.


2014 ◽  
Vol 64 (2) ◽  
pp. 90-98 ◽  
Author(s):  
Irene Carmagnola ◽  
Tiziana Nardo ◽  
Piergiorgio Gentile ◽  
Chiara Tonda-Turo ◽  
Clara Mattu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document