Significant improvement of the nitrilase activity by semi-rational protein engineering and its application in the production of iminodiacetic acid

2018 ◽  
Vol 116 ◽  
pp. 563-571 ◽  
Author(s):  
Zhi-Qiang Liu ◽  
Ming-Ming Lu ◽  
Xin-Hong Zhang ◽  
Feng Cheng ◽  
Jian-Miao Xu ◽  
...  
2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Jin-Feng Zhang ◽  
Zhi-Qiang Liu ◽  
Xin-Hong Zhang ◽  
Yu-Guo Zheng

AbstractBiotransformation of iminodiacetonitrile (IDAN) to iminodiacetic acid (IDA) was investigated with a newly isolated Alcaligenes faecalis ZJUTBX11 strain showing nitrilase activity in the immobilized form. To reduce the mass transfer resistance and to increase the toleration ability of the microorganisms to the toxic substrate as well as to enhance their ability to be reused, encapsulation of the whole cells in alginate-chitosan-alginate (ACA) membrane liquid-core capsules was attempted in the present study. The optimal pH and temperature for nitrilase activity of encapsulated A. faecalis ZJUTBX11 cells were 7.5°C and 35°C, respectively, which is consistent with free cells. Based on the Michaelis-Menten model, kinetic parameters of the conversion reaction with IDAN as the substrate were: K m = (17.6 ± 0.3) mmol L−1 and V max = (97.6 ± 1.2) μmol min−1 g−1 of dry cell mass for encapsulated cells and (16.8 ± 0.4) mmol L−1 and (108.0 ± 2.7) μmol min−1 g−1 of dry cell mass for free cells, respectively. After being recycled ten times, the whole cells encapsulated in ACA capsules still retained 90 % of the initial nitrilase activity while only 35 % were retained by free cells. Lab scale production of IDA using encapsulated cells in a bubble column reactor and a packed bed reactor were performed respectively.


2019 ◽  
Vol 476 (24) ◽  
pp. 3835-3847 ◽  
Author(s):  
Aliyath Susmitha ◽  
Kesavan Madhavan Nampoothiri ◽  
Harsha Bajaj

Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A–F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.


1981 ◽  
Vol 20 (02) ◽  
pp. 90-93
Author(s):  
P.B. Parab ◽  
U.R. Raikar ◽  
R.D. Ganatra ◽  
M. C. Patel

Phenolphthalexon, a compound with iminodiacetic acid as a functional group, has been labelled with 113mIn to high chemical purity and its usefulness in studies of biliary excretion patency has been studied. Organ distribution of 113mIn-phenolphthalexon in mice was characterized by high liver uptake (50.8% of the administered dose after 5 min) and rapid clearance through the gall bladder. An animal model for studying obstruction of biliary excretion has been developed. Data on the kinetics of the radiopharmaceutical were obtained by collecting in-vivo data through an on-line computer.


Acta Naturae ◽  
2010 ◽  
Vol 2 (3) ◽  
pp. 47-61 ◽  
Author(s):  
V I Tishkov ◽  
S S Savin ◽  
A S Yasnaya

2013 ◽  
Vol 30 (11) ◽  
pp. 1194-1202
Author(s):  
LOPES André Moreni ◽  
ROMEU Jorge Sánchez ◽  
MEIRELES Rolando Páez ◽  
PERERA Gabriel Marquez ◽  
MORALES Rolando Perdomo ◽  
...  

1989 ◽  
Vol 54 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Roland Meier ◽  
Harald Frank ◽  
Reinhard Kirmse ◽  
Reiner Salzer ◽  
Joachim Stach ◽  
...  

The voltammetric behaviour of amavadine (AV) was found to be considerably different from that of the complexes of VO2+ with methyliminodiacetic acid (MIDA) and iminodiacetic acid (IDA). To get an insight in the rather complicated reduction mechanism of the latter complexes the reductions of V(III) (MIDA) and V(III) (IDA) have been studied for comparison. The species V(III) (MIDA)2 and V(III) (IDA)2 are reduced to the appropriate V(II) complexes in a chemically reversible process. VO(MIDA)2 and VO(IDA)2 are reduced to the same complexes via an ECE mechanism. The investigation of the electroreduction of AV shows that this process is not reversible in the chemical sense. As a probable explanation, the conclusion was drawn that AV and the usual V(IV)O-iminocarboxylato complexes differ in their structures.


Sign in / Sign up

Export Citation Format

Share Document