Spiro-acridine inhibiting tyrosinase enzyme: Kinetic, protein-ligand interaction and molecular docking studies

2019 ◽  
Vol 122 ◽  
pp. 289-297 ◽  
Author(s):  
Thaís Meira Menezes ◽  
Sinara Mônica Vitalino de Almeida ◽  
Ricardo Olímpio de Moura ◽  
Gustavo Seabra ◽  
Maria do Carmo Alves de Lima ◽  
...  
Author(s):  
Sowmya Suri ◽  
Rumana Waseem ◽  
Seshagiri Bandi ◽  
Sania Shaik

A 3D model of Cyclin-dependent kinase 5 (CDK5) (Accession Number: Q543f6) is generated based on crystal structure of P. falciparum PFPK5-indirubin-5-sulphonate ligand complex (PDB ID: 1V0O) at 2.30 Å resolution was used as template. Protein-ligand interaction studies were performed with flavonoids to explore structural features and binding mechanism of flavonoids as CDK5 (Cyclin-dependent kinase 5) inhibitors. The modelled structure was selected on the basis of least modeler objective function. The model was validated by PROCHECK. The predicted 3D model is reliable with 93.0% of amino acid residues in core region of the Ramachandran plot. Molecular docking studies with flavonoids viz., Diosmetin, Eriodictyol, Fortuneletin, Apigenin, Ayanin, Baicalein, Chrysoeriol and Chrysosplenol-D with modelled protein indicate that Diosmetin is the best inhibitor containing docking score of -8.23 kcal/mol. Cys83, Lys89, Asp84. The compound Diosmetin shows interactions with Cys83, Lys89, and Asp84.


2021 ◽  
pp. 1-16
Author(s):  
Adriana Rathner ◽  
Petr Rathner ◽  
Andreas Friedrich ◽  
Michael Wießner ◽  
Christian Manuel Kitzler ◽  
...  

<b><i>Introduction:</i></b> Epidermolysis bullosa (EB) describes a family of rare genetic blistering skin disorders. Various subtypes are clinically and genetically heterogeneous, and a lethal postpartum form of EB is the generalized severe junctional EB (gs-JEB). gs-JEB is mainly caused by premature termination codon (PTC) mutations in the skin anchor protein LAMB3 (laminin subunit beta-3) gene. The ribosome in majority of translational reads of LAMB3PTC mRNA aborts protein synthesis at the PTC signal, with production of a truncated, nonfunctional protein. This leaves an endogenous readthrough mechanism needed for production of functional full-length Lamb3 protein albeit at insufficient levels. Here, we report on the development of drugs targeting ribosomal protein L35 (rpL35), a ribosomal modifier for customized increase in production of full-length Lamb3 protein from a LAMB3PTC mRNA. <b><i>Methods:</i></b> Molecular docking studies were employed to identify small molecules binding to human rpL35. Molecular determinants of small molecule binding to rpL35 were further characterized by titration of the protein with these ligands as monitored by nuclear magnetic resonance (NMR) spectroscopy in solution. Changes in NMR chemical shifts were used to map the docking sites for small molecules onto the 3D structure of the rpL35. <b><i>Results:</i></b> Molecular docking studies identified 2 FDA-approved drugs, atazanavir and artesunate, as candidate small-molecule binders of rpL35. Molecular interaction studies predicted several binding clusters for both compounds scattered throughout the rpL35 structure. NMR titration studies identified the amino acids participating in the ligand interaction. Combining docking predictions for atazanavir and artesunate with rpL35 and NMR analysis of rpL35 ligand interaction, one binding cluster located near the N-terminus of rpL35 was identified. In this region, the nonidentical binding sites for atazanavir and artesunate overlap and are accessible when rpL35 is integrated in its natural ribosomal environment. <b><i>Conclusion:</i></b> Atazanavir and artesunate were identified as candidate compounds binding to ribosomal protein rpL35 and may now be tested for their potential to trigger a rpL35 ribosomal switch to increase production of full-length Lamb3 protein from a LAMB3PTC mRNA for targeted systemic therapy in treating gs-JEB.


2017 ◽  
Vol 2 (12) ◽  
pp. 191 ◽  
Author(s):  
Ramchander Merugu ◽  
Uttam Kumar Neerudu ◽  
Karunakar Dasa ◽  
Kalpana V. Singh

Molecular docking of sucrase-isomaltase with ligand deacetylbisacodyl when subjected to docking analysis using docking server, predicted in-silico result with a free energy of -3.36 Kcal/mol which was agreed well with physiological range for protein-ligand interaction, making bisacodyl probable potent anti-isomaltase molecule. According to docking server Inhibition constant is 5.98Mm. which predicts that the ligand is going to inhibits enzyme and result in a clinically relevant drug interaction with a substrate for the enzyme. Hydrogen bond with bond length 3.45is formed between Pro 64 (A) of target and of ligand, which is again indicative of the docking between target and ligand. Excellent electrostatic interactions of polar, hydrophobic, pi-pi and Van der walls are observed. The proteinligand interaction study showed 6 amino acid residues interaction with the ligand.


2019 ◽  
Vol 16 ◽  
Author(s):  
Amrutkar Rakesh Devidas ◽  
Mahendra Sing Ranawat

Background: Quinazolines and quinazolinones constitute a major class of biologically active molecules both from natural and synthetic sources. The quinazolinone moiety is an important pharmacophore showing many types of pharmacological activities as shown in recent exhaustive review on the chemistry of 2-heteroaryl & heteroalkyl-4-quinazolinones4-quinazolinones are the formal condensation products of anthranilic acid and amides, and they can also be prepared in this fashion through the Niementowski quinazolinone synthesis, named after it’s discoverer Stefan Niementowski. Quinazoline and condensed Quinazoline exhibit potent central nervous system (CNS) activities like anti-anxiety, analgesic, anti-inflammatory [10] and anticonvulsant [11]. Quinazolin-4-ones with 2, 3-disubstitution is reported to possess significant analgesic, anti-inflammatory and anticonvulsant activities Methods: To expand these views and application profiles, efforts have been developed for the synthesis of a new class of quinazolinone by incorporating different amines into synthesized benzoxazinone ring by replacing O atom in the ring. Up to now, a great number of various procedures have been proposed for the synthesis of quinazolin-4-ones in the past few years [16]. Using microwave radiation, this reaction could be easily and rapidly performed in very good yields, providing a large quantity of various 3-substituted-2- propyl-quinazolin-4-one derivatives which can be employed as useful bioactive compounds. We report a facile and efficient method for the synthesis of 3-substituted-2-propyl-quinazolin-4-one by the condensation reaction of Anthranilic acid or Halogen substituted anthranilic acid or methyl anthranilate, butanoic anhydride with various amines. we also reports a drug/ligand or receptor/protein interactions by identifying the suitable active sites in human gamma-aminobutyric acid receptor, the gaba (a)r-beta3 homopentamer human gamma-aminobutyric acid receptor, the gaba (a)r-beta3 homopentamer protein. Results: We are pleased to find that the reaction provided of 3-alkyl/aryl-2-alkyl-quinazolin-4-one gives good yield as well as good quality of product by using MW. All the synthesized compounds were subjected to grid-based molecular docking studies. The results shows that compound 4t have good affinity to the active site residue of human gamma-aminobutyric acid receptor, the gaba (a)r-beta3 homopentamer. Conclusion: The Microwave irradiation for synthesis of the title compounds offers reduction in reaction time, operation simplicity, cleaner reaction, easy work up and improved yields. The procedure clearly highlights the advantages of Green Chemistry. The data reported in this article may be a helpful guide for the medicinal chemists who are working in this area. The Protein-Ligand interaction plays a significant role in structural based drug designing. In the Present work we have docked the ligand, 2, 3-disubstituted quinazolinone with the proteins that are used as the target for GABA-A receptor.


2020 ◽  
Vol 42 (2) ◽  
pp. 214-214
Author(s):  
Sabrina Benouis Sabrina Benouis ◽  
Fouad Ferkous Fouad Ferkous ◽  
Khairedine Kraim Khairedine Kraim ◽  
Ahmed Allali Ahmed Allali ◽  
Youcef Saihi Youcef Saihi

The gingerol presents the starting point of our work which aims to discover new inhibitors of the tyrosinase enzyme. Therefore, we have studied the activity of gingerol derivatives as inhibitors against mushroom tyrosinase based on the molecular docking. Molecular docking studies were performed on a series of gingerol analogues retrieved from Zinc database (with 70% as similarity threshold). The gingerol analogues were docked within the active site region of mushroom tyrosinase (PDB: 2Y9X) using Molegro Virtual Docker V.5.0. The results of molecular docking studies revealed that some analogues of gingerol have higher Moldock score (in terms of negative energy) than gingerol and the experimentally known inhibitors of tyrosinase, and showed favourable molecular interactions exhibiting common molecular interaction with Ala323, Met280 and Asn260 residues of tyrosinase. Furthermore, the top docked compounds used in this work do not violate the Lipinsky rule of five.


Sign in / Sign up

Export Citation Format

Share Document