scholarly journals Targeting C-terminal Helical bundle of NCOVID19 Envelope (E) protein

2021 ◽  
Vol 175 ◽  
pp. 131-139 ◽  
Author(s):  
Shruti Mukherjee ◽  
Amaravadhi Harikishore ◽  
Anirban Bhunia
Keyword(s):  
2006 ◽  
Vol 91 (3) ◽  
pp. 938-947 ◽  
Author(s):  
Jaume Torres ◽  
Krupakar Parthasarathy ◽  
Xin Lin ◽  
Rathi Saravanan ◽  
Andreas Kukol ◽  
...  

TBEV-particles are assembled in an immature, noninfectious form in the endoplasmic reticulum by the envelopment of the viral core (containing the viral RNA) by a lipid membrane associated with two viral proteins, prM and E. Immature particles are transported through the cellular exocytic pathway and conformational changes induced by acidic pH in the trans-Golgi network allow the proteolytic cleavage of prM by furin, a cellular protease, resulting in the release of mature and infectious TBE-virions. The E protein controls cell entry by mediating attachment to as yet ill-defined receptors as well as by low-pH-triggered fusion of the viral and endosomal membrane after uptake by receptor-mediated endocytosis. Because of its key functions in cell entry, the E protein is the primary target of virus neutralizing antibodies, which inhibit these functions by different mechanisms. Although all flavivirus E proteins have a similar overall structure, divergence at the amino acid sequence level is up to 60 percent (e.g. between TBE and dengue viruses), and therefore cross-neutralization as well as (some degree of) cross-protection are limited to relatively closely related flaviviruses, such as those constituting the tick-borne encephalitis serocomplex.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Pralow ◽  
Alexander Nikolay ◽  
Arnaud Leon ◽  
Yvonne Genzel ◽  
Erdmann Rapp ◽  
...  

AbstractHere, we present for the first time, a site-specific N-glycosylation analysis of proteins from a Brazilian Zika virus (ZIKV) strain. The virus was propagated with high yield in an embryo-derived stem cell line (EB66, Valneva SE), and concentrated by g-force step-gradient centrifugation. Subsequently, the sample was proteolytically digested with different enzymes, measured via a LC–MS/MS-based workflow, and analyzed in a semi-automated way using the in-house developed glyXtoolMS software. The viral non-structural protein 1 (NS1) was glycosylated exclusively with high-mannose structures on both potential N-glycosylation sites. In case of the viral envelope (E) protein, no specific N-glycans could be identified with this method. Nevertheless, N-glycosylation could be proved by enzymatic de-N-glycosylation with PNGase F, resulting in a strong MS-signal of the former glycopeptide with deamidated asparagine at the potential N-glycosylation site N444. This confirmed that this site of the ZIKV E protein is highly N-glycosylated but with very high micro-heterogeneity. Our study clearly demonstrates the progress made towards site-specific N-glycosylation analysis of viral proteins, i.e. for Brazilian ZIKV. It allows to better characterize viral isolates, and to monitor glycosylation of major antigens. The method established can be applied for detailed studies regarding the impact of protein glycosylation on antigenicity and human pathogenicity of many viruses including influenza virus, HIV and corona virus.


2021 ◽  
Author(s):  
Yipeng Cao ◽  
Rui Yang ◽  
Imshik Lee ◽  
Wenwen Zhang ◽  
Jiana Sun ◽  
...  

2016 ◽  
Vol 45 (18) ◽  
pp. 4859-4872 ◽  
Author(s):  
A. J. Miles ◽  
B. A. Wallace

Circular dichroism spectra of helical bundle (red), beta barrel (blue), and mixed helical/sheet/unordered (green) membrane proteins.


2002 ◽  
Vol 158 (5) ◽  
pp. 929-940 ◽  
Author(s):  
Thomas J. Melia ◽  
Thomas Weber ◽  
James A. McNew ◽  
Lillian E. Fisher ◽  
Robert J. Johnston ◽  
...  

We utilize structurally targeted peptides to identify a “tC fusion switch” inherent to the coil domains of the neuronal t-SNARE that pairs with the cognate v-SNARE. The tC fusion switch is located in the membrane-proximal portion of the t-SNARE and controls the rate at which the helical bundle that forms the SNAREpin can zip up to drive bilayer fusion. When the fusion switch is “off” (the intrinsic state of the t-SNARE), zippering of the helices from their membrane-distal ends is impeded and fusion is slow. When the tC fusion switch is “on,” fusion is much faster. The tC fusion switch can be thrown by a peptide that corresponds to the membrane-proximal half of the cognate v-SNARE, and binds reversibly to the cognate region of the t-SNARE. This structures the coil in the membrane-proximal domain of the t-SNARE and accelerates fusion, implying that the intrinsically unstable coil in that region is a natural impediment to the completion of zippering, and thus, fusion. Proteins that stabilize or destabilize one or the other state of the tC fusion switch would exert fine temporal control over the rate of fusion after SNAREs have already partly zippered up.


2017 ◽  
Vol 198 (8) ◽  
pp. 3149-3156 ◽  
Author(s):  
Hong-Cheng Wang ◽  
Liangyue Qian ◽  
Ying Zhao ◽  
Joni Mengarelli ◽  
Indra Adrianto ◽  
...  
Keyword(s):  

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
S. Saif Hasan ◽  
Andrew Miller ◽  
Gopal Sapparapu ◽  
Estefania Fernandez ◽  
Thomas Klose ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document