Pancreastatin induces islet amyloid peptide aggregation in the pancreas, liver, and skeletal muscle: An implication for type 2 diabetes

2021 ◽  
Vol 182 ◽  
pp. 760-771
Author(s):  
Mohammad Irshad Reza ◽  
Anees A. Syed ◽  
Sanjana Kumariya ◽  
Pragati Singh ◽  
Athar Husain ◽  
...  
2018 ◽  
Author(s):  
Se-Hwa Kim ◽  
Soo-Kyung Kim ◽  
Young-Ju Choi ◽  
Seok-Won Park ◽  
Eun-Jig Lee ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 771-P
Author(s):  
SODAI KUBOTA ◽  
HITOSHI KUWATA ◽  
SAKI OKAMOTO ◽  
DAISUKE YABE ◽  
KENTA MUROTANI ◽  
...  

2019 ◽  
Author(s):  
Wei Ling ◽  
Yi Huang ◽  
Yan-Mei Huang ◽  
Jian Shen ◽  
Shan-Huan Wang ◽  
...  

iScience ◽  
2021 ◽  
pp. 102712
Author(s):  
Tiina Öhman ◽  
Jaakko Teppo ◽  
Neeta Datta ◽  
Selina Mäkinen ◽  
Markku Varjosalo ◽  
...  

2017 ◽  
Vol 122 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Leryn J. Reynolds ◽  
Daniel P. Credeur ◽  
Camila Manrique ◽  
Jaume Padilla ◽  
Paul J. Fadel ◽  
...  

Increased endothelin-1 (ET-1) and reduced endothelial nitric oxide phosphorylation (peNOS) are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), but studies examining these links in humans are limited. We sought to assess basal and insulin-stimulated endothelial signaling proteins (ET-1 and peNOS) in skeletal muscle from T2D patients. Ten obese T2D [glucose disposal rate (GDR): 6.6 ± 1.6 mg·kg lean body mass (LBM)−1·min−1] and 11 lean insulin-sensitive subjects (Lean GDR: 12.9 ± 1.2 mg·kg LBM−1·min−1) underwent a hyperinsulinemic-euglycemic clamp with vastus lateralis biopsies taken before and 60 min into the clamp. Basal biopsies were also taken in 11 medication-naïve, obese, non-T2D subjects. ET-1, peNOS (Ser1177), and eNOS protein and mRNA were measured from skeletal muscle samples containing native microvessels. Femoral artery blood flow was assessed by duplex Doppler ultrasound. Insulin-stimulated blood flow was reduced in obese T2D (Lean: +50.7 ± 6.5% baseline, T2D: +20.8 ± 5.2% baseline, P < 0.05). peNOS/eNOS content was higher in Lean under basal conditions and, although not increased by insulin, remained higher in Lean during the insulin clamp than in obese T2D ( P < 0.05). ET-1 mRNA and peptide were 2.25 ± 0.50- and 1.52 ± 0.11-fold higher in obese T2D compared with Lean at baseline, and ET-1 peptide remained 2.02 ± 1.9-fold elevated in obese T2D after insulin infusion ( P < 0.05) but did not increase with insulin in either group ( P > 0.05). Obese non-T2D subjects tended to also display elevated basal ET-1 ( P = 0.06). In summary, higher basal skeletal muscle expression of ET-1 and reduced peNOS/eNOS may contribute to a reduced insulin-stimulated leg blood flow response in obese T2D patients. NEW & NOTEWORTHY Although impairments in endothelial signaling are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), human studies examining these links are limited. We provide the first measures of nitric oxide synthase and endothelin-1 expression from skeletal muscle tissue containing native microvessels in individuals with and without T2D before and during insulin stimulation. Higher basal skeletal muscle expression of endothelin-1 and reduced endothelial nitric oxide phosphorylation (peNOS)/eNOS may contribute to reduced insulin-stimulated blood flow in obese T2D patients.


2004 ◽  
Vol 377 (3) ◽  
pp. 709-716 ◽  
Author(s):  
Emma T. A. S. JAIKARAN ◽  
Melanie R. NILSSON ◽  
Anne CLARK

Islet amyloid polypeptide (IAPP), or ‘amylin’, is co-stored with insulin in secretory granules of pancreatic islet β-cells. In Type 2 diabetes, IAPP converts into a β-sheet conformation and oligomerizes to form amyloid fibrils and islet deposits. Granule components, including insulin, inhibit spontaneous IAPP fibril formation in vitro. To determine the mechanism of this inhibition, molecular interactions of insulin with human IAPP (hIAPP), rat IAPP (rIAPP) and other peptides were examined using surface plasmon resonance (BIAcore), CD and transmission electron microscopy (EM). hIAPP and rIAPP complexed with insulin, and this reaction was concentration-dependent. rIAPP and insulin, but not pro-insulin, bound to hIAPP. Insulin with a truncated B-chain, to prevent dimerization, also bound hIAPP. In the presence of insulin, hIAPP did not spontaneously develop β-sheet secondary structure or form fibrils. Insulin interacted with pre-formed IAPP fibrils in a regular repeating pattern, as demonstrated by immunoEM, suggesting that the binding sites for insulin remain exposed in hIAPP fibrils. Since rIAPP and hIAPP form complexes with insulin (and each other), this could explain the lack of amyloid fibrils in transgenic mice expressing hIAPP. It is likely that IAPP fibrillogenesis is inhibited in secretory granules (where the hIAPP concentration is in the millimolar range) by heteromolecular complex formation with insulin. Alterations in the proportions of insulin and IAPP in granules could disrupt the stability of the peptide. The increase in the proportion of unprocessed pro-insulin produced in Type 2 diabetes could be a major factor in destabilization of hIAPP and induction of fibril formation.


Sign in / Sign up

Export Citation Format

Share Document