Acute fluoride poisoning alters myocardial cytoskeletal and AMPK signaling proteins in rats

2017 ◽  
Vol 229 ◽  
pp. 96-101 ◽  
Author(s):  
Lakshmikanthan Panneerselvam ◽  
Azhwar Raghunath ◽  
Ekambaram Perumal
2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Haoran Li ◽  
Wuling Zhou ◽  
Shiwei Sun ◽  
Tianlong Zhang ◽  
Tieqi Zhang ◽  
...  

Abstract Background Dysfunctional osteogenesis of bone marrow mesenchymal stem cells (BMSCs) plays an important role in osteoporosis occurrence and development. However, the molecular mechanisms of osteogenic differentiation remain unclear. This study explored whether microfibrillar-associated protein 5 (MFAP5) regulated BMSCs osteogenic differentiation. Methods We used shRNA or cDNA to knock down or overexpress MFAP5 in C3H10 and MC3T3-E1 cells. AR-S- and ALP-staining were performed to quantify cellular osteogenic differentiation. The mRNA levels of the classical osteogenic differentiation biomarkers Runx2, Col1α1, and OCN were quantified by qRT-PCR. Finally, we employed Western blotting to measure the levels of Wnt/β-catenin and AMPK signaling proteins. Results At days 0, 3, 7, and 14 after osteogenic induction, AR-S- and ALP-staining was lighter in MFAP5 knockdown compared to control cells, as were the levels of Runx2, Col1α1 and OCN. During osteogenesis, the levels of β-catenin, p-GSK-3β, AMPK, and p-AMPK were upregulated, while that of GSK-3β was downregulated, indicating that Wnt/β-catenin and AMPK signaling were activated. The relevant molecules were expressed at lower levels in the knockdown than control group; the opposite was seen for overexpressing cell lines. Conclusions MFAP5 regulates osteogenesis via Wnt/β‑catenin- and AMPK-signaling; MFAP5 may serve as a therapeutic target in patients with osteoporosis.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1226-P ◽  
Author(s):  
YAWEN ZHANG ◽  
MICHAEL M. CHANG ◽  
POLINA R. PINKHASOVA ◽  
FENGYI ZHAO ◽  
TAMAYO KOBAYASHI ◽  
...  
Keyword(s):  

2010 ◽  
Vol 999 (999) ◽  
pp. 1-11 ◽  
Author(s):  
Zhiwei Wang ◽  
Yiwei Li ◽  
Fazlul H. Sarkar

2019 ◽  
Vol 19 (5) ◽  
pp. 342-348 ◽  
Author(s):  
Zhi-You Cai ◽  
Chuan-Ling Wang ◽  
Tao-Tao Lu ◽  
Wen-Ming Yang

Background:Liver kinase B1 (LKB1)/5’-adenosine monophosphate-activated protein kinase (AMPK) signaling, a metabolic checkpoint, plays a neuro-protective role in the pathogenesis of Alzheimer’s disease (AD). Amyloid-β (Aβ) acts as a classical biomarker of AD. The aim of the present study was to explore whether berberine (BBR) activates LKB1/AMPK signaling and ameliorates Aβ pathology.Methods:The Aβ levels were detected using enzyme-linked immunosorbent assay and immunohistochemistry. The following biomarkers were measured by Western blotting: phosphorylated (p-) LKB1 (Ser334 and Thr189), p-AMPK (AMPKα and AMPKβ1), synaptophysin, post-synaptic density protein 95 and p-cAMP-response element binding protein (p-CREB). The glial fibrillary acidic protein (GFAP) was determined using Western blotting and immunohistochemistry.Results:BBR inhibited Aβ expression in the brain of APP/PS1 mice. There was a strong up-regulation of both p-LKB1 (Ser334 and Thr189) and p-AMPK (AMPKα and AMPKβ1) in the brains of APP/PS1 transgenic mice after BBR-treatment (P<0.01). BBR promoted the expression of synaptophysin, post-synaptic density protein 95 and p-CREB(Ser133) in the AD brain, compared with the model mice.Conclusion:BBR alleviates Aβ pathogenesis and rescues synapse damage via activating LKB1/AMPK signaling in the brain of APP/PS1 transgenic mice.


Life Sciences ◽  
2021 ◽  
pp. 119649
Author(s):  
Milad Ashrafizadeh ◽  
Sepideh Mirzaei ◽  
Kiavash Hushmandi ◽  
Vahid Rahmanian ◽  
Amirhossein Zabolian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document