scholarly journals Microfibrillar-associated protein 5 regulates osteogenic differentiation by modulating the Wnt/β-catenin and AMPK signaling pathways

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Haoran Li ◽  
Wuling Zhou ◽  
Shiwei Sun ◽  
Tianlong Zhang ◽  
Tieqi Zhang ◽  
...  

Abstract Background Dysfunctional osteogenesis of bone marrow mesenchymal stem cells (BMSCs) plays an important role in osteoporosis occurrence and development. However, the molecular mechanisms of osteogenic differentiation remain unclear. This study explored whether microfibrillar-associated protein 5 (MFAP5) regulated BMSCs osteogenic differentiation. Methods We used shRNA or cDNA to knock down or overexpress MFAP5 in C3H10 and MC3T3-E1 cells. AR-S- and ALP-staining were performed to quantify cellular osteogenic differentiation. The mRNA levels of the classical osteogenic differentiation biomarkers Runx2, Col1α1, and OCN were quantified by qRT-PCR. Finally, we employed Western blotting to measure the levels of Wnt/β-catenin and AMPK signaling proteins. Results At days 0, 3, 7, and 14 after osteogenic induction, AR-S- and ALP-staining was lighter in MFAP5 knockdown compared to control cells, as were the levels of Runx2, Col1α1 and OCN. During osteogenesis, the levels of β-catenin, p-GSK-3β, AMPK, and p-AMPK were upregulated, while that of GSK-3β was downregulated, indicating that Wnt/β-catenin and AMPK signaling were activated. The relevant molecules were expressed at lower levels in the knockdown than control group; the opposite was seen for overexpressing cell lines. Conclusions MFAP5 regulates osteogenesis via Wnt/β‑catenin- and AMPK-signaling; MFAP5 may serve as a therapeutic target in patients with osteoporosis.

2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Ying Chen ◽  
Yu-Run Yang ◽  
Xiao-Liang Fan ◽  
Peng Lin ◽  
Huan Yang ◽  
...  

AbstractOsteoblast-mediated bone formation is a complex process involving various pathways and regulatory factors, including cytokines, growth factors, and hormones. Investigating the regulatory mechanisms behind osteoblast differentiation is important for bone regeneration therapy. miRNAs are known as important regulators, not only in a variety of cellular processes, but also in the pathogenesis of bone diseases. In the present study, we investigated the potential roles of miR-206 during osteoblast differentiation. We report that miR-206 expression was significantly down-regulated in human bone marrow mesenchymal stem cells (BMSCs) at days 7 and 14 during osteogenic induction. Furthermore, miR-206 overexpressing BMSCs showed attenuated alkaline phosphatase (ALP) activity, Alizarin Red staining, and osteocalcin secretion. The mRNA levels of osteogenic markers, Runx2 and Osteopontin (OPN), were significantly down-regulated in miR-206 overexpressing BMSCs. We observed that significantly increased glutamine uptake at days 7 and 14 during the osteogenic induction and inhibition of glutamine metabolism by knocking down glutaminase (GLS)-suppressed osteogenic differentiation of BMSCs. Here, we discover that miR-206 could directly bind to the 3′-UTR region of GLS mRNA, resulting in suppressed GLS expression and glutamine metabolism. Finally, restoration of GLS in miR-206 overexpressing BMSCs led to recovery of glutamine metabolism and osteogenic differentiation. In summary, these results reveal a new insight into the mechanisms of the miR-206-mediated osteogenesis through regulating glutamine metabolism. Our study may contribute to the development of therapeutic agents against bone diseases.


2012 ◽  
Vol 120 (02) ◽  
pp. 84-88 ◽  
Author(s):  
S. Chen ◽  
X. Zhuang ◽  
Y. Liu ◽  
A. Sun ◽  
C. Chen

AbstractLipin1, a lately indentified adipokine, may link obesity with insulin resistance and diabetes. The present study aimed to investigate the changes and significance of lipin1 expression and lipin1-AMPK signaling in diet-induced hepatic insulin resistance.24 4-week-old Male Wistar rats were randomly divided into 2 groups: (1) control group (CO), (2) high-fat diet group (HF). Insulin sensitivity was evaluated by hyperinsulinemic-euglycemic clamp technique. The mRNA levels of α1 and α2 subunit of AMPKα as well as Lipin1 were measured using Real-time RT-PCR. The activities of AMPKα and Akt were evaluated by detection of p-AMPKα (Thr-172) and p-Akt (ser473) by Western blot.After treatment of 4 months, HF group showed significantly increased levels of body weight, fasting plasma glucose and insulin levels; Plasma and liver total cholesterol (TC), triglycerides (TG) levels were also markedly elevated; Lipin1 expression at both mRNA and protein levels were significantly deceased. Compared with CO group, the mRNA and protein levels of AMPKα1 and AMPKα2 were not changed, whereas the p-AMPK (Thr-172) and p-AKT (ser473) levels in liver were significantly decreased in HF group.These findings indicated that the decrease in lipin1 expression and AMPKα activation may contribute to hepatic insulin resistance in diet-induced obese rats.


2020 ◽  
Vol 10 (12) ◽  
pp. 1865-1870
Author(s):  
Yang Ying ◽  
Binghao Zhao ◽  
Wei Qian ◽  
Li Xu

Bone marrow mesenchymal stem cells (BMSCs) have self-renewal potential with multi-directional differentiation. Progranulin prevents bone degradation, inhibits inflammation and protects bone tissue. However, the role of Progranulin in osteoporotic BMSCs is unclear. Osteoporosis (OP) rat models were prepared by ovarian removal and treated with different doses (5 and 10 μM) of Progranulin followed by analysis of BMP-2 level by ELISA, bone mineral density and ALP activity. OP rat BMSCs were isolated and assigned into control group and Progranulin group followed by analysis of Progranulin level by ELISA, cell proliferation by MTT assay, RUNX2 and COL1A1 mRNA level by Real time PCR, and PI3K/Akt/PPARγ signaling protein level by Western blot. Progranulin treatment of OP rats dose-dependently increased BMP-2 expression, bone density and ALP activity. Compared with OP group, there were significant differences (P <0.05). Progranulin expression and BMSCs proliferation was increased, and RUNX2 and COL1A1 mRNA expression was elevated in Progranulin-treated OP group along with increased PI3K/Akt expression and decreased PPARγ protein expression. Compared with OP group, the difference was statistically significant, and the change was more significant with increasing concentration (P <0.05). Progranulin promotes BMSCs osteogenic differentiation and proliferation by regulating PI3K/Akt/PPARγ signaling pathway, which is beneficial for OP rats’ bone synthesis.


2020 ◽  
Vol 10 (2) ◽  
pp. 281-286
Author(s):  
Zirong Yang ◽  
Hangbo Qu ◽  
Hongting Jin

Osteogenic differentiation of BMSCs is beneficial to the treatment of osteoarthritis. Progranulin (PGRN) is a chondrogenic factor. However, the role of progranulin in the differentiation of BMSCs under inflammation remains unclear. Rat BMSCs were isolated and divided into control group, inflammation group (treated with LPS), and PGRN group (5 and 10 /μM) followed by analysis of survival rate of BMSCs by MTT assay, Caspase 3 activity, ALP activity, expression of Runx2 and OP by real time PCR, level of MMP-3, TIMP-1, FAK and MAPK by Western blot and IL-6 and IL-10 secretion by ELISA. LPS treatment significantly inhibited BMSCs proliferation, increased Caspase 3 activity, decreased ALP activity, expression of Runx2 and OP, increased IL-6 secretion, decreased IL-10 secretion, increased MMP-3 expression, decreased expression of TIMP-1, FAK and p-P38 (P < 0.05). PGRN treatment on BMSCs under inflammation significantly promoted cell proliferation, decreased Caspase 3 activity, increased ALP activity, expression of Runx2 and OP, decreased IL-6 secretion, increased IL-10 secretion, decreased MMP-3 expression, and increased TIMP-1, FAK and p-P38 expression (P < 0.05) with more significant changes in the higher concentration. Under inflammation, BMSCs proliferation was inhibited, apoptosis was increased, and osteogenic differentiation was weakened. PGRN inhibits the proliferation of BMSCs and apoptosis, and promotes osteogenic differentiation by regulating FAK/MAPK pathway.


2020 ◽  
Vol 10 (1) ◽  
pp. 121-126
Author(s):  
Wenkun Lu ◽  
Tao Wang ◽  
Xunjian Gao ◽  
Fuqiang Yang ◽  
Jianjian Ge

Osteogenic differentiation of BMSCs is beneficial for osteoarthritis (OA) treatment. Silent information regulator (SIRT1) plays a role in endocrine diseases and aging-related diseases. However, the role of SIRT1 in OA has not yet been elucidated. Rat BMSCs were isolated and divided into control group, inflammation group (BMSCs were cultured with IL-6), SIRT1 group (SIRT1 agonist Resveratrol was added under the action of IL-6) followed by analysis of cell proliferation by MTT assay, Caspase 3 activity, ALP activity, expression of osteogenic genes Runx2 and OC and adipogenic differentiation gene PPARγ2 by Real time PCR, NF-κB expression by western blot and secretion of TNF-α and IL-6 by ELISA. In inflammation group, SIRT1 expression was significantly decreased, cell proliferation was significantly inhibited, and Caspase 3 activity was increased. Meanwhile, ALP activity, Runx2 and OC expression was decreased, PPARγ2 and NF-κB expression was increased, along with elevated TNF-α and IL-6 secretion compared to control (P < 0.05). Resveratrol can significantly promote the expression of SIRT1 in BMSCs of inflammation group, promote cell proliferation, decrease Caspase 3 activity, and increase Runx2 and OC expression. In addition, it decreased PPARγ2 and NF-κB expression and reduced the secretion of TNF-α and IL-6 (P < 0.05). The expression of SIRT1 was decreased in BMSCs under inflammation. SIRT1 overexpression in BMSCs under inflammation inhibits inflammation, promotes proliferation and osteogenic differentiation of BMSCs through regulating NF-κB signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianliang Gao ◽  
Shouyu Xiang ◽  
Xiao Wei ◽  
Ram Ishwar Yadav ◽  
Menghu Han ◽  
...  

Osteoporosis (OP) is a metabolic disease characterized by decreased bone mass and increased risk of fragility fractures, which significantly reduces the quality of life. Stem cell-based therapies, especially using bone marrow mesenchymal stem cells (BMSCs), are a promising strategy for treating OP. Nevertheless, the survival and differentiation rates of the transplanted BMSCs are low, which limits their therapeutic efficiency. Icariin (ICA) is a traditional Chinese medicine formulation that is prescribed for tonifying the kidneys. It also promotes the proliferation and osteogenic differentiation of BMSCs, although the specific mechanism remains unclear. Based on our previous research, we hypothesized that ICA promotes bone formation via the sclerostin/Wnt/β-catenin signaling pathway. We isolated rat BMSCs and transfected them with sclerostin gene (SOST) overexpressing or knockdown constructs and assessed osteogenic induction in the presence or absence of ICA. Sclerostin significantly inhibited BMSC proliferation and osteogenic differentiation, whereas the presence of ICA not only increased the number of viable BMSCs but also enhanced ALP activity and formation of calcium nodules during osteogenic induction. In addition, the osteogenic genes including Runx2, β-catenin, and c-myc as well as antioxidant factors (Prdx1, Cata, and Nqo1) were downregulated by sclerostin and restored by ICA treatment. Mechanistically, ICA exerted these effects by activating the Wnt/β-catenin pathway. In conclusion, ICA can promote the proliferation and osteogenic differentiation of BMSCs in situ and therefore may enhance the therapeutic efficiency of BMSC transplantation in OP.


2021 ◽  
Vol 30 ◽  
pp. 096368972110574
Author(s):  
Ge Yahao ◽  
Wang Xinjia

Mesenchymal stem cell (MSC) exosomes promote tissue regeneration and repair, and thus might be used to treat many diseases; however, the influence of microenvironmental conditions on exosomes remains unclear. The present study aimed to analyze the effect of osteogenic induction on the functions of human umbilical cord MSC (HucMSC)-derived exosomes. Exosomes from standardized stem cell culture (Exo1) and osteogenic differentiation-exosomes (Exo2) were co-cultured with osteoblasts, separately. Cell counting kit-8 assays, alkaline phosphatase and alizarin red staining were used to observe the exosomes’ effects on osteoblast proliferation and differentiation. The levels of osteogenic differentiation-related proteins were analyzed using western blotting. Estrogen-deficient osteoporosis model mice were established, and treated with the two exosome preparations. Micro-computed tomography and hematoxylin and eosin staining were performed after 6 weeks. MicroRNAs in Exo1 and Exo2 were sequenced and analyzed using bioinformatic analyses. Compared with Exo1 group, Exo2 had a stronger osteogenic differentiation promoting effect, but a weaker proliferation promoting effect. In ovariectomy-induced osteoporosis mice, both Exo1 and Exo2 improved the tibial density and reversed osteoporosis in vivo. High-throughput microRNA sequencing identified 221 differentially expressed microRNAs in HucMSC-derived exosomes upon osteogenic induction as compared with the untreated control group. Importantly, we found that 41 of these microRNAs are potentially critical for MSC-secreted exosomes during osteogenic induction. Mechanistically, exosomal miRNAs derived from osteogenic induced-HucMSCs are involved in bone development and differentiation, such as osteoclast differentiation and the MAPK signaling pathway. The expression of hsa-mir-2110 and hsa-mir-328-3p gradually increased with prolonged osteogenic differentiation and regulated target genes associated with bone differentiation, suggesting that they are probably the most important osteogenesis regulatory microRNAs in exosomes. In conclusion, we examined the contribution of osteogenic induction to the function of exosomes secreted by HucMSCs following osteogenic differentiation in vitro and in vivo, and reveal the underlying molecular mechanisms of exosome action during osteoporosis.


2021 ◽  
Author(s):  
Bin Wang ◽  
Zhenhui Li ◽  
Caiyuan Mai ◽  
Penglin Mou ◽  
Lei Pan

Abstract Introduction: It has been established that miR-26b-5p actively participate in the osteogenic differentiation of bone mesenchymal stem cells (BMSCs), which is of great value in osteoporosis treatment. Database showed that Fibroblast growth factor(FGF)21 is a potential binding site of miR-26b-5p. This study aimed to investigate the molecular osteogenic mechanisms of miR-26b-5p targeting FGF21 in postmenopausal osteoporosis (PMOP). Methods: 5ml of bone marrow was aspirated from the anterior superior iliac spine in 10 PMOP women during bone marrow puncture. BMSCs were used to establish an in vitro cell model, and BMSCs markers were analyzed by flow cytometry. miR-26b-5p and FGF21 were overexpressed for 48h, and then placed in an osteogenic induction medium for osteogenic induction culture, the expression of RNA was detect using RT-qPCR. Cells from miR-26b-5p group were collected on days 7, 14 and 21 of induction for ALP and alizarin red S staining. On day 7 of induction, RT-qPCR was used to measure Runx2, Osterix (Osx), and target gene FGF21 expression levels in each group. The dual-luciferase reporter gene system was used to verify that FGF21 was a direct target of miR-26b-5p. FGF21 was measured by western blotting in the miR-26b-5p overexpression group and in the miR-26b-5p inhibition group. Results: BMSCs were identified according with the antigenic characteristics. miR-26b-5p expression was significantly upregulated after the expression of miR-26b-5p mimics; however, FGF21 expression was downregulated after FGF21 mimics. After overexpression of miR-26b-5p, the alkaline phosphatase activity and nodules of alizarin red S in the culture medium gradually increased as the induction time increased. RT-qPCR showed that the expressions of master osteogenic factors Runx2 and Osx in the BMSC+ osteogenic differentiation medium group was significantly higher than in the BMSC group, the expressions of the factors in the BMSC+ miR-26b-5p overexpression group was significantly higher than in the control group. Target gene FGF21 expression was significantly lower in the BMSC+ osteogenic differentiation medium group than in the BMSC group, and was significantly lower in the BMSC+ miR-26b-5p overexpression group than in the control group. Luciferase reporter assays demonstrated that FGF21 was a direct target of miR-26b-5p. Finally, western blotting analysis showed that FGF21 expression was significantly downregulated in the miR-26b-5p overexpressed group and upregulated in the miR-26b-5p inhibition group. Conclusion: miR-26b-5p can regulate the osteogenic differentiation of BMSCs and participate in PMOP pathogenesis via suppressing FGF21. The present study provides the basis for further studies on PMOP.


2018 ◽  
Vol 50 (5) ◽  
pp. 1916-1928 ◽  
Author(s):  
Guangsi Shen ◽  
Hong Zhang ◽  
Peng Jia ◽  
Guangfei Li ◽  
Xiao Wang ◽  
...  

Background/Aims: Bone marrow mesenchymal stem cells (BMSCs) play an essential role in osteoporosis. However, the molecular mechanisms and the involvement of glutamine metabolism in osteogenic BMSCs differentiation and osteoporosis remain largely unclear. In this study, we investigated the role of Golgi membrane protein 1 (GOLM1) and glutamine metabolism in BMSCs differentiation and osteoporosis. Methods: Osteogenic differentiation-inducing media (Odi) was used to induce the osteogenic differentiation of BMSCs. The mRNA expression of GOLM1, ALP, Runx2, Osx, BSP and OCN was determined by qRT-PCR assay. Western blot assay was used to analyze GOLM1, p-mTOR, mTOR, p-S6 and S6 abundance in GOLM1 silencing and over-expressed BMSCs. Glutamine uptake, intracellular glutamine, glutamate and α-KG level was detected using indicated Kits. GOLM1 antibody, glutamine metabolism inhibitors EGCG and BPTES were used to treat ovariectomy (OVX)-induced osteoporosis. Bone mineral density and bone volume relative to tissue volume (%) were analyzed by micro-CT. Serum was collected from osteoporosis patients and healthy participants and subjected to GOLM1 determination using ELISA Kit. Results: GOLM1 expression and glutamine metabolism were suppressed by Odi. GOLM1 blockage or inhibition of glutamine metabolism promoted the osteogenic differentiation of BMSCs induced by Odi. GOLM1 activated glutamine metabolism depending on the mTOR signaling pathway. In vivo, GOLM1 antibody or combination of glutamine inhibitor EGCG and BPTES rescued the osteoporosis in an OVX-operated mouse model. Serum GOLM1 level was increased in the patients of osteoporosis compared with healthy people. Conclusion: GOLM1 stimulates glutamine metabolism to suppress the osteogenic differentiation of BMSCs and to promote osteoporosis. Therefore, GOLM1 activation of glutamine metabolism is a potential target for osteoporosis.


Author(s):  
Gang Xu ◽  
Zheng Ding ◽  
Hui-feng Shi

Abstract Background Bone marrow mesenchymal stem cells (BMMSCs) can be used for bone regeneration in the specified condition. Osteogenic differentiation of BMMSCs is controlled by microRNAs (miRNAs) and other factors. This study was aimed to identify the role and mechanism of miR-889 in regulating the osteogenic differentiation of BMMSCs. Methods Osteoporosis patients and normal control bone tissues were collected and used PCR techniques to identify the change of miR-889 and WNT7A. Moreover, the dynamic change of miR-889 and WNT7A during osteogenic differentiation of BMMSCs was also measured. Bioinformatic analysis was performed to identify the target genes and potential pathways of miR-889. Then, we constructed miR-889 mimic and inhibitor, ALP staining, ARS, osteoblastic-related protein, and Wnt β-catenin signaling pathway-related protein were also measured. WNT7A siRNA was also used to verify the function of miR-889. Results In the present study, we showed that miR-889 expression was upregulated in osteoporosis patients than healthy control. However, the miR-889 expression was downregulated during osteogenic differentiation. Bioinformatics analysis found that miR-889 targets 666 genes and mainly through Wnt β-catenin signaling pathway. Administrated miR-889 mimic, the ALP activity, and calcium deposition were decreased than the control group, while miR-889 inhibitor shown the opposite trend. And miR-889 could bind the 3′UTR of WNT7A. We further used WNT7A siRNA to explore the function of miR-889, and the results revealed that co-cultured with miR-889 inhibitor and WNT7A siRNA was associated with a reduction of ALP activity and calcium deposition and osteoblastic-related proteins than miR-889 inhibitor alone. Conclusion Our results revealed that miR-889 plays a negative role in inducing osteogenic differentiation of BMSCs through Wnt β-catenin signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document