The potential implication of decreased DHEA levels in the pathophysiology of chronic Chagas cardiomyopathy

Author(s):  
Oscar Bottasso
Author(s):  
Nivedita Bhardwaj ◽  
Nancy Tripathi ◽  
Bharat Goel ◽  
Shreyans K. Jain

: During cancer progression, the unrestricted proliferation of cells is supported by the impaired cell death response provoked by certain oncogenes. Both autophagy and apoptosis are the signaling pathways of cell death, which are targeted for cancer treatment. Defects in apoptosis result in reduced cell death and ultimately tumor progression. The tumor cells lacking apoptosis phenomena are killed by ROS- mediated autophagy. The autophagic programmed cell death requires apoptosis protein for inhibiting tumor growth; thus, the interconnection between these two pathways determines the fate of a cell. The cross-regulation of autophagy and apoptosis is an important aspect to modulate autophagy, apoptosis and to sensibilise apoptosis-resistant tumor cells under metabolic stress and might be a rational approach for drug designing strategy for the treatment of cancer. Numerous proteins involved in autophagy have been investigated as the druggable target for anticancer therapy. Several compounds of natural origin have been reported, to control autophagy activity through the PI3K/Akt/mTOR key pathway. Diosgenin, a steroidal sapogenin has emerged as a potential candidate for cancer treatment. It induces ROS-mediated autophagy, inhibits PI3K/Akt/mTOR pathway, and produces cytotoxicity selectively in cancer cells. This review aims to focus on optimal strategies using diosgenin to induce apoptosis by modulating the pathways involved in autophagy regulation and its potential implication in the treatment of various cancer. The discussion has been extended to the medicinal chemistry of semi-synthetic derivatives of diosgenin exhibiting anticancer activity.


Author(s):  
Héctor O. Rodríguez‐Angulo ◽  
Andrés Lamsfus‐Calle ◽  
Javier Isoler‐Alcaráz ◽  
Javier Galán‐Martínez ◽  
Alfonso Herreros‐Cabello ◽  
...  

Author(s):  
Eva Mezeiova ◽  
Martina Hrabinova ◽  
Vendula Hepnarova ◽  
Daniel Jun ◽  
Jana Janockova ◽  
...  

Lupus ◽  
2019 ◽  
Vol 29 (2) ◽  
pp. 216-218
Author(s):  
P R Hurtado ◽  
E Hurtado-Pérez ◽  
C Luo ◽  
J Bednarz ◽  
P Hissaria ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 412
Author(s):  
Thuan Duc Lao ◽  
Thuy Ai Huyen Le

The abnormal expression of circulating miRNAs (c-miRNAs) has become an emerging field in the development of miRNAs-based diagnostic and therapeutic tools for human diseases, including osteoarthritis (OA). OA is the most common form of arthritis leading to disability and a major socioeconomic burden. The abnormal expression of miRNAs plays important roles in the pathogenesis of OA. Unraveling the role of miRNAs in the pathogenesis of OA will throw light on the potential for the development of miRNAs-based diagnostic and therapeutic tools for OA. This article reviews and highlights recent advances in the study of miRNAs in OA, with specific demonstration of the functions of miRNA, especially c-miRNA, in OA pathogenesis as well as its potential implication in the treatment of OA. Based on a systematic literature search using online databases, we figured out the following main points: (1) the integrative systematic review of c-mRNAs and its target genes related to OA pathogenesis; (2) the potential use of c-miRNAs for OA diagnosis purposes as potential biomarkers; and (3) for therapeutic purposes, and we also highlight certain remedies that regulate microRNA expression based on its target genes.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Cristina Aguilar-Flores ◽  
Octavio Castro-Escamilla ◽  
Elizabeth M. Ortega-Rocha ◽  
César Maldonado-García ◽  
Fermín Jurado-Santa Cruz ◽  
...  

Psoriasis is an inflammatory autoimmune disease characterized by cutaneous lesions in plaques. It has been proposed that the immune response has a key role in the disease progression. Particularly, the Th17 cells through IL-17 can contribute to maintain the inflammatory process. The pathogenic Th17 phenotype has been described in human diseases and associated with high severity in inflammatory experimental models. However, it is not clear if the pathogenic phenotype could be present in the skin and peripheral blood as well as its possible association to severity in psoriasis. In the lesional skin, we found high infiltration of Th17 cells and the pathogenic phenotype, finding a correlation between the frequency of Th17 cells and the Psoriasis Area and Severity Index (PASI) score. In peripheral blood, we observed a pool of Th17 lymphocytes with potential to acquire pathogenic features. Interestingly, the percentage of pathogenic Th17 cells (CD4+ RORγt+ IFN-γ+) correlates with disease severity. Moreover, we distinguished three groups of patients based on their IL-17/IFN-γ production by Th17 lymphocytes, which seems to be related with a dynamic or stable potential to express these cytokines. Remarkably, we evaluated the cytokine production by Th17 cells as an immunological marker for the adequate selection of biologic therapy. We found that patients analyzed by this immunological approach and treated with antibodies against IL-17 and TNFα showed great improvement depicted by reduction in PASI and Dermatology Life Quality Index (DLQI) score as well as the percentage of Body Surface Area (BSA). Altogether, our results highlight the importance of the assessment of the pathogenic phenotype in Th17 cells as an immune personalized analysis with the potential to support the therapy choice in the clinical practice.


2008 ◽  
Vol 29 (21) ◽  
pp. 2587-2591 ◽  
Author(s):  
R. A. Guerri-Guttenberg ◽  
D. R. Grana ◽  
G. Ambrosio ◽  
J. Milei

Sign in / Sign up

Export Citation Format

Share Document