Estimating earthquake-damage areas using Landsat-8 OLI surface reflectance data

2019 ◽  
Vol 33 ◽  
pp. 275-283 ◽  
Author(s):  
Xiwei Fan ◽  
Gaozhong Nie ◽  
Yan Deng ◽  
Jiwen An ◽  
Junxue Zhou ◽  
...  
2021 ◽  
Author(s):  
Hongye Cao ◽  
Ling Han ◽  
Liangzhi Li

Abstract Remote sensing dynamic monitoring methods often benefit from a dense time series of observations. To enhance these time series, it is sometimes necessary to integrate data from multiple satellite systems. For more than 40 years, Landsat has provided the longest time record of space-based land surface observations, and the successful launch of the Landsat-8 Operational Land Imager (OLI) sensor in 2013 continues this tradition. However, the 16-day observation period of Landsat images has challenged the ability to measure subtle and transient changes like never before. The European Space Agency (ESA) launched the Sentinel-2A satellite in 2015. The satellite carries a Multispectral Instrument (MSI) sensor that provides a 10-20m spatial resolution data source providing an opportunity to complement the Landsat data record. The collection of Sentinel-2A MSI, Landsat-7 ETM+, and Landsat-8 OLI data provide multispectral global coverage from 10m to 30m with further reduced data revisit intervals. There are many differences between sensor data that need to be taken into account to use these data together reliably. The purpose of this study is to evaluate the potential of integrating surface reflectance data from Landsat-7, Landsat-8 and Sentinel-2 archived in the Google Earth Engine (GEE) cloud platform. To test and quantify the differences between these sensors, hundreds of thousands of surface reflectance data from sensor pairs were collected over China. In this study, some differences in the surface reflectance of the sensor pairs were identified, based upon which a cross-sensor conversion model was proposed, i.e., a suitable adjustment equation was fitted using an ordinary least squares (OLS) linear regression method to convert the Sentinel-2 reflectance values closer to the Landsat-7 or Landsat-8 values. The regression results show that the Sentinel MSI data are spectrally comparable to both types of Landsat image data, just as the Landsat sensors are comparable to each other. The root mean square error (RMSE) values between MSI and Landsat spectral values before coordinating the sensors ranged from 0.014 to 0.037, and the RMSE values between OLI and ETM + ranged from 0.019 to 0.039. After coordination, RMSE values between MSI and Landsat spectral values ranged from 0.011 to 0.026, and RMSD values between OLI and ETM + ranged from 0.013 to 0.034. The fitted adjustment equations were also compared to the HLS (Harmonized Landsat-8 Sentinel-2) global fitted equations (Sentinel-2 to Landsat-8) published by the National Aeronautics and Space Administration (NASA) and were found to be significantly different, increasing the likelihood that such adjustments would need to be fitted on a regional basis. This study believes that despite the differences in these datasets, it appears feasible to integrate these datasets by applying a linear regression correction between the bands.


2020 ◽  
Vol 9 (4) ◽  
pp. 257 ◽  
Author(s):  
Kiwon Lee ◽  
Kwangseob Kim ◽  
Sun-Gu Lee ◽  
Yongseung Kim

Surface reflectance data obtained by the absolute atmospheric correction of satellite images are useful for land use applications. For Landsat and Sentinel-2 images, many radiometric processing methods exist, and the images are supported by most types of commercial and open-source software. However, multispectral KOMPSAT-3A images with a resolution of 2.2 m are currently lacking tools or open-source resources for obtaining top-of-canopy (TOC) reflectance data. In this study, an atmospheric correction module for KOMPSAT-3A images was newly implemented into the optical calibration algorithm in the Orfeo Toolbox (OTB), with a sensor model and spectral response data for KOMPSAT-3A. Using this module, named OTB extension for KOMPSAT-3A, experiments on the normalized difference vegetation index (NDVI) were conducted based on TOC reflectance data with or without aerosol properties from AERONET. The NDVI results for these atmospherically corrected data were compared with those from the dark object subtraction (DOS) scheme, a relative atmospheric correction method. The NDVI results obtained using TOC reflectance with or without the AERONET data were considerably different from the results obtained from the DOS scheme and the Landsat-8 surface reflectance of the Google Earth Engine (GEE). It was found that the utilization of the aerosol parameter of the AERONET data affects the NDVI results for KOMPSAT-3A images. The TOC reflectance of high-resolution satellite imagery ensures further precise analysis and the detailed interpretation of urban forestry or complex vegetation features.


2018 ◽  
Vol 15 (10) ◽  
pp. 1610-1614
Author(s):  
Lin Sun ◽  
Quan Wang ◽  
Xueying Zhou ◽  
Jing Wei ◽  
Xu Yang ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 105 ◽  
Author(s):  
Mingbo Liu ◽  
Chunxiang Cao ◽  
Yongfeng Dang ◽  
Xiliang Ni

Forest canopy height is an important parameter for studying biodiversity and the carbon cycle. A variety of techniques for mapping forest height using remote sensing data have been successfully developed in recent years. However, the demands for forest height mapping in practical applications are often not met, due to the lack of corresponding remote sensing data. In such cases, it would be useful to exploit the latest, cheaper datasets and combine them with free datasets for the mapping of forest canopy height. In this study, we proposed a method that combined ZiYuan-3 (ZY-3) stereo images, Shuttle Radar Topography Mission global 1 arc second data (SRTMGL1), and Landsat 8 Operational Land Imager (OLI) surface reflectance data. The method consisted of three procedures: First, we extracted a digital surface model (DSM) from the ZY-3, using photogrammetry methods and subtracted the SRTMGL1 to obtain a crude canopy height model (CHM). Second, we refined the crude CHM and correlated it with the topographically corrected Landsat 8 surface reflectance data, the vegetation indices, and the forest types through a Random Forest model. Third, we extrapolated the model to the entire study area covered by the Landsat data, and obtained a wall-to-wall forest canopy height product with 30 m × 30 m spatial resolution. The performance of the model was evaluated by the Random Forest’s out-of-bag estimation, which yielded a coefficient of determination (R2) of 0.53 and a root mean square error (RMSE) of 3.28 m. We validated the predicted forest canopy height using the mean forest height measured in the field survey plots. The validation result showed an R2 of 0.62 and a RMSE of 2.64 m.


2020 ◽  
Vol 12 (16) ◽  
pp. 2597
Author(s):  
Cibele Teixeira Pinto ◽  
Xin Jing ◽  
Larry Leigh

Landsat Level-1 products are delivered as quantized and calibrated scaled Digital Numbers (DN). The Level-1 DN data can be rescaled to Top-of-Atmosphere (TOA) reflectance applying radiometric rescaling coefficients. Currently, the Level-1 product is the standard data product of the Landsat sensors. The more recent Level-2 data products contain surface reflectance values, i.e., reflectance as it would be measured at ground level in the absence of atmospheric effects; in the near future, these products are anticipated to become the standard products of the Landsat sensors. The purpose of this paper is to present a radiometric performance evaluation of Level-1 and Level-2 data products for the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) sensors. TOA reflectance and derived surface reflectance values from both data products were evaluated and compared to in situ measurements from eight test sites located in Turkey, Brazil, Chile, the United States, France, and Namibia. The results indicate an agreement between the ETM+ and OLI Level-1 TOA reflectance data and the in situ measurements of 3.9% to 6.5% and 3.9% to 6.0%, respectively, across all spectral bands. Agreement between the in situ measurements and both Level-2 surface reflectance data products were consistently decreased in the shorter wavelength bands, and slightly better in the longer wavelength bands. The mean percent absolute error for Level-2 surface reflectance data ranged from 3.3% to 10% for both Landsat sensors. The significant decay in agreement with the data collected in situ in the short wavelength spectral bands with Level-2 data suggests issues with retrieval of aerosol concentration at some sites. In contrast, the results indicate a reasonably accurate estimate of water vapor in the mid-infrared spectrum. Lastly, despite the less reliable performance of Level-2 data product in the visible spectral region (compared with Level-1 data) in both sensors, the Landsat-8 OLI Level-2 showed an improvement of surface reflectance product over all spectral bands in common with the Landsat-7 ETM+ Level-2 data.


2021 ◽  
Vol 14 (1) ◽  
pp. 83
Author(s):  
Xiaocheng Zhou ◽  
Xueping Liu ◽  
Xiaoqin Wang ◽  
Guojin He ◽  
Youshui Zhang ◽  
...  

Surface reflectance (SR) estimation is the most essential preprocessing step for multi-sensor remote sensing inversion of geophysical parameters. Therefore, accurate and stable atmospheric correction is particularly important, which is the premise and basis of the quantitative application of remote sensing. It can also be used to directly compare different images and sensors. The Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi-Spectral Instrument (MSI) surface reflectance products are publicly available and demonstrate high accuracy. However, there is not enough validation using synchronous spectral measurements over China’s land surface. In this study, we utilized Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products reconstructed by Categorical Boosting (CatBoost) and 30 m ASTER Global Digital Elevation Model (ASTER GDEM) data to adjust the relevant parameters to optimize the Second Simulation of Satellite Signal in the Solar Spectrum (6S) model. The accuracy of surface reflectance products obtained from the optimized 6S model was compared with that of the original 6S model and the most commonly used Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model. Surface reflectance products were validated and evaluated with synchronous in situ measurements from 16 sites located in five provinces of China: Fujian, Gansu, Jiangxi, Hunan, and Guangdong. Through the indirect and direct validation across two sensors and three methods, it provides evidence that the synchronous measurements have the higher and more reliable validation accuracy. The results of the validation indicated that, for Landsat-8 OLI and Sentinel-2 MSI SR products, the overall root mean square error (RMSE) calculated results of optimized 6S, original 6S and FLAASH across all spectral bands were 0.0295, 0.0378, 0.0345, and 0.0313, 0.0450, 0.0380, respectively. R2 values reached 0.9513, 0.9254, 0.9316 and 0.9377, 0.8822, 0.9122 respectively. Compared with the original 6S model and FLAASH model, the mean percent absolute error (MPAE) of the optimized 6S model was reduced by 32.20% and 15.86% for Landsat-8 OLI, respectively. On the other, for the Sentinel-2 MSI SR product, the MPAE value was reduced by 33.56% and 33.32%. For the two kinds of data, the accuracy of each band was improved to varying extents by the optimized 6S model with the auxiliary data. These findings support the hypothesis that reliable auxiliary data are helpful in reducing the influence of the atmosphere on images and restoring reality as much as is feasible.


Sign in / Sign up

Export Citation Format

Share Document