scholarly journals Evaluation Analysis of Landsat Level-1 and Level-2 Data Products Using In Situ Measurements

2020 ◽  
Vol 12 (16) ◽  
pp. 2597
Author(s):  
Cibele Teixeira Pinto ◽  
Xin Jing ◽  
Larry Leigh

Landsat Level-1 products are delivered as quantized and calibrated scaled Digital Numbers (DN). The Level-1 DN data can be rescaled to Top-of-Atmosphere (TOA) reflectance applying radiometric rescaling coefficients. Currently, the Level-1 product is the standard data product of the Landsat sensors. The more recent Level-2 data products contain surface reflectance values, i.e., reflectance as it would be measured at ground level in the absence of atmospheric effects; in the near future, these products are anticipated to become the standard products of the Landsat sensors. The purpose of this paper is to present a radiometric performance evaluation of Level-1 and Level-2 data products for the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) sensors. TOA reflectance and derived surface reflectance values from both data products were evaluated and compared to in situ measurements from eight test sites located in Turkey, Brazil, Chile, the United States, France, and Namibia. The results indicate an agreement between the ETM+ and OLI Level-1 TOA reflectance data and the in situ measurements of 3.9% to 6.5% and 3.9% to 6.0%, respectively, across all spectral bands. Agreement between the in situ measurements and both Level-2 surface reflectance data products were consistently decreased in the shorter wavelength bands, and slightly better in the longer wavelength bands. The mean percent absolute error for Level-2 surface reflectance data ranged from 3.3% to 10% for both Landsat sensors. The significant decay in agreement with the data collected in situ in the short wavelength spectral bands with Level-2 data suggests issues with retrieval of aerosol concentration at some sites. In contrast, the results indicate a reasonably accurate estimate of water vapor in the mid-infrared spectrum. Lastly, despite the less reliable performance of Level-2 data product in the visible spectral region (compared with Level-1 data) in both sensors, the Landsat-8 OLI Level-2 showed an improvement of surface reflectance product over all spectral bands in common with the Landsat-7 ETM+ Level-2 data.

Proceedings ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. 565
Author(s):  
Nguyen Nguyen Vu ◽  
Le Van Trung ◽  
Tran Thi Van

This article presents the methodology for developing a statistical model for monitoring salinity intrusion in the Mekong Delta based on the integration of satellite imagery and in-situ measurements. We used Landsat-8 Operational Land Imager and Thermal Infrared Sensor (Landsat- 8 OLI and TIRS) satellite data to establish the relationship between the planetary reflectance and the ground measured data in the dry season during 2014. The three spectral bands (blue, green, red) and the principal component band were used to obtain the most suitable models. The selected model showed a good correlation with the exponential function of the principal component band and the ground measured data (R2 > 0.8). Simulation of the salinity distribution along the river shows the intrusion of a 4 g/L salt boundary from the estuary to the inner field of more than 50 km. The developed model will be an active contribution, providing managers with adaptation and response solutions suitable for intrusion in the estuary as well as the inner field of the Mekong Delta.


2021 ◽  
Vol 14 (1) ◽  
pp. 83
Author(s):  
Xiaocheng Zhou ◽  
Xueping Liu ◽  
Xiaoqin Wang ◽  
Guojin He ◽  
Youshui Zhang ◽  
...  

Surface reflectance (SR) estimation is the most essential preprocessing step for multi-sensor remote sensing inversion of geophysical parameters. Therefore, accurate and stable atmospheric correction is particularly important, which is the premise and basis of the quantitative application of remote sensing. It can also be used to directly compare different images and sensors. The Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi-Spectral Instrument (MSI) surface reflectance products are publicly available and demonstrate high accuracy. However, there is not enough validation using synchronous spectral measurements over China’s land surface. In this study, we utilized Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products reconstructed by Categorical Boosting (CatBoost) and 30 m ASTER Global Digital Elevation Model (ASTER GDEM) data to adjust the relevant parameters to optimize the Second Simulation of Satellite Signal in the Solar Spectrum (6S) model. The accuracy of surface reflectance products obtained from the optimized 6S model was compared with that of the original 6S model and the most commonly used Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model. Surface reflectance products were validated and evaluated with synchronous in situ measurements from 16 sites located in five provinces of China: Fujian, Gansu, Jiangxi, Hunan, and Guangdong. Through the indirect and direct validation across two sensors and three methods, it provides evidence that the synchronous measurements have the higher and more reliable validation accuracy. The results of the validation indicated that, for Landsat-8 OLI and Sentinel-2 MSI SR products, the overall root mean square error (RMSE) calculated results of optimized 6S, original 6S and FLAASH across all spectral bands were 0.0295, 0.0378, 0.0345, and 0.0313, 0.0450, 0.0380, respectively. R2 values reached 0.9513, 0.9254, 0.9316 and 0.9377, 0.8822, 0.9122 respectively. Compared with the original 6S model and FLAASH model, the mean percent absolute error (MPAE) of the optimized 6S model was reduced by 32.20% and 15.86% for Landsat-8 OLI, respectively. On the other, for the Sentinel-2 MSI SR product, the MPAE value was reduced by 33.56% and 33.32%. For the two kinds of data, the accuracy of each band was improved to varying extents by the optimized 6S model with the auxiliary data. These findings support the hypothesis that reliable auxiliary data are helpful in reducing the influence of the atmosphere on images and restoring reality as much as is feasible.


2021 ◽  
Author(s):  
Hongye Cao ◽  
Ling Han ◽  
Liangzhi Li

Abstract Remote sensing dynamic monitoring methods often benefit from a dense time series of observations. To enhance these time series, it is sometimes necessary to integrate data from multiple satellite systems. For more than 40 years, Landsat has provided the longest time record of space-based land surface observations, and the successful launch of the Landsat-8 Operational Land Imager (OLI) sensor in 2013 continues this tradition. However, the 16-day observation period of Landsat images has challenged the ability to measure subtle and transient changes like never before. The European Space Agency (ESA) launched the Sentinel-2A satellite in 2015. The satellite carries a Multispectral Instrument (MSI) sensor that provides a 10-20m spatial resolution data source providing an opportunity to complement the Landsat data record. The collection of Sentinel-2A MSI, Landsat-7 ETM+, and Landsat-8 OLI data provide multispectral global coverage from 10m to 30m with further reduced data revisit intervals. There are many differences between sensor data that need to be taken into account to use these data together reliably. The purpose of this study is to evaluate the potential of integrating surface reflectance data from Landsat-7, Landsat-8 and Sentinel-2 archived in the Google Earth Engine (GEE) cloud platform. To test and quantify the differences between these sensors, hundreds of thousands of surface reflectance data from sensor pairs were collected over China. In this study, some differences in the surface reflectance of the sensor pairs were identified, based upon which a cross-sensor conversion model was proposed, i.e., a suitable adjustment equation was fitted using an ordinary least squares (OLS) linear regression method to convert the Sentinel-2 reflectance values closer to the Landsat-7 or Landsat-8 values. The regression results show that the Sentinel MSI data are spectrally comparable to both types of Landsat image data, just as the Landsat sensors are comparable to each other. The root mean square error (RMSE) values between MSI and Landsat spectral values before coordinating the sensors ranged from 0.014 to 0.037, and the RMSE values between OLI and ETM + ranged from 0.019 to 0.039. After coordination, RMSE values between MSI and Landsat spectral values ranged from 0.011 to 0.026, and RMSD values between OLI and ETM + ranged from 0.013 to 0.034. The fitted adjustment equations were also compared to the HLS (Harmonized Landsat-8 Sentinel-2) global fitted equations (Sentinel-2 to Landsat-8) published by the National Aeronautics and Space Administration (NASA) and were found to be significantly different, increasing the likelihood that such adjustments would need to be fitted on a regional basis. This study believes that despite the differences in these datasets, it appears feasible to integrate these datasets by applying a linear regression correction between the bands.


2021 ◽  
Vol 13 (10) ◽  
pp. 1927
Author(s):  
Fuqin Li ◽  
David Jupp ◽  
Thomas Schroeder ◽  
Stephen Sagar ◽  
Joshua Sixsmith ◽  
...  

An atmospheric correction algorithm for medium-resolution satellite data over general water surfaces (open/coastal, estuarine and inland waters) has been assessed in Australian coastal waters. In situ measurements at four match-up sites were used with 21 Landsat 8 images acquired between 2014 and 2017. Three aerosol sources (AERONET, MODIS ocean aerosol and climatology) were used to test the impact of the selection of aerosol optical depth (AOD) and Ångström coefficient on the retrieved accuracy. The initial results showed that the satellite-derived water-leaving reflectance can have good agreement with the in situ measurements, provided that the sun glint is handled effectively. Although the AERONET aerosol data performed best, the contemporary satellite-derived aerosol information from MODIS or an aerosol climatology could also be as effective, and should be assessed with further in situ measurements. Two sun glint correction strategies were assessed for their ability to remove the glint bias. The most successful one used the average of two shortwave infrared (SWIR) bands to represent sun glint and subtracted it from each band. Using this sun glint correction method, the mean all-band error of the retrieved water-leaving reflectance at the Lucinda Jetty Coastal Observatory (LJCO) in north east Australia was close to 4% and unbiased over 14 acquisitions. A persistent bias in the other strategy was likely due to the sky radiance being non-uniform for the selected images. In regard to future options for an operational sun glint correction, the simple method may be sufficient for clear skies until a physically based method has been established.


2021 ◽  
Author(s):  
Amanda T. Nylund ◽  
Rickard Bensow ◽  
Mattias Liefvendahl ◽  
Arash Eslamdoost ◽  
Anders Tengberg ◽  
...  

<p>This interdisciplinary study with implications for fate and transport of pollutants from shipping, investigates the previously overlooked phenomenon of ship induced mixing. When a ship moves through water, the hull and propeller induce a long-lasting turbulent wake. Natural waters are usually stratified, and the stratification influences both the vertical and horizontal extent of the wake. The altered turbulent regime in shipping lanes governs the distribution of discharged pollutants, e.g. PAHs, metals, nutrients and non-indigenous species. The ship related pollutant load follows the trend in volumes of maritime trade, which has almost tripled since the 1980s. In heavily trafficked areas there may be one ship passage every ten minutes; today shipping constitutes a significant source of pollution.</p><p>To understand the environmental impact of shipping related pollutants, it is essential to know their fate following regional scale transport. However, previous modelling efforts assuming discharge at the surface will not adequately reflect the input values in the regional models. Therefore, it is urgent to bridge the gaps between the spatiotemporal scales from high-resolution numerical modeling of the flow hydrodynamics around the ship, mixing processes and interaction of the ship and wake with stratification, and parameterization in regional oceanographic modeling. Here this knowledge gap is addressed by combining an array of methods; in situ measurements, remote sensing and numerical flow modeling.</p><p>A bottom-mounted Acoustic Doppler Current Profiler was placed under a ship lane, for <em>in-situ</em> measurements of the vertical and temporal expansion of turbulent wakes. In addition, <em>ex-situ</em> measurements with Landsat 8 Thermal Infrared Sensor were used to estimate the longevity and spatial extent of the thermal signal from ship wakes. The computational modelling was conducted using well resolved 3D RANS modelling for the hull and the near wake (up to five ship lengths aft), a method typically used for the near wake behaviour in analysing the propulsion system. As this is not feasible to use for a far wake analysis, the predicted wake is then used as input for a 2D+time modelling for the sustained wake up to 30min after the ship passage. These results, both from measurements and numerical models, are then combined to analyse how ship-induced turbulence influence at what depth discharged pollutants will be found.</p><p>This first step to cover the mesoscales of the turbulent ship wake is necessary to assess the impact of ship related pollution. In-situ measurements show median wake depth 13.5m (max 31.5m) and median longevity 10min (max 29min). Satellite data show median thermal wake signal 13.7km (max 62.5km). A detailed simulation model will only be possible to use for the first few 100m of the ship wake, but the coupling to a simplified 2D+time modelling shows a promising potential to bridge our understanding of the impact of the ship wake on the larger scales. Our model results indicate that the natural stratification affects the distribution and retention of pollutants in the wake region. The depth of discharge and the wake turbulence characteristics will in turn affect the fate and transport of pollutants on larger spatiotemporal scales.</p>


2021 ◽  
Vol 24 (2) ◽  
pp. 11-16
Author(s):  
Gilberto Ramírez ◽  
Joel Rojas ◽  
Jhon Guerrero

El propósito de este estudio es implementar los algoritmos OC2 y OC3 para estimar la Concentración de Clorofila-a (CCA) superficial a partir de datos imágenes del sensor OLI a bordo del satélite Landsat 8. Se validó el modelo de corrección atmosférica LaSRC (Landsat 8 Surface Reflectance Code) con mediciones in situ de la reflectancia de la superficie del agua registrada con un espectroradiómetro en la superficie del área del cultivo de concha de abanico de la bahía de Sechura. La validación da como resultado un coeficiente de correlación lineal de R = 95.1 % y un error cuadrático medio RMSE = 0.0095. También se hizo una comparación de la CCA derivadas de los algoritmos OC2 y OC3, obteniéndose como resultado un RMSE=0.145 mg/m3 y un coeciente de correlación de R=99 %. Por último, se hizo un contraste de los histogramas de la distribución espacial de la CCA estimadas de los algoritmos OC2 y OC3 sobre una región del área de estudio. Los resultados indican una mayor capacidad de discernir del algoritmo OC3 con respecto al algoritmo OC2.


2020 ◽  
Vol 9 (4) ◽  
pp. 257 ◽  
Author(s):  
Kiwon Lee ◽  
Kwangseob Kim ◽  
Sun-Gu Lee ◽  
Yongseung Kim

Surface reflectance data obtained by the absolute atmospheric correction of satellite images are useful for land use applications. For Landsat and Sentinel-2 images, many radiometric processing methods exist, and the images are supported by most types of commercial and open-source software. However, multispectral KOMPSAT-3A images with a resolution of 2.2 m are currently lacking tools or open-source resources for obtaining top-of-canopy (TOC) reflectance data. In this study, an atmospheric correction module for KOMPSAT-3A images was newly implemented into the optical calibration algorithm in the Orfeo Toolbox (OTB), with a sensor model and spectral response data for KOMPSAT-3A. Using this module, named OTB extension for KOMPSAT-3A, experiments on the normalized difference vegetation index (NDVI) were conducted based on TOC reflectance data with or without aerosol properties from AERONET. The NDVI results for these atmospherically corrected data were compared with those from the dark object subtraction (DOS) scheme, a relative atmospheric correction method. The NDVI results obtained using TOC reflectance with or without the AERONET data were considerably different from the results obtained from the DOS scheme and the Landsat-8 surface reflectance of the Google Earth Engine (GEE). It was found that the utilization of the aerosol parameter of the AERONET data affects the NDVI results for KOMPSAT-3A images. The TOC reflectance of high-resolution satellite imagery ensures further precise analysis and the detailed interpretation of urban forestry or complex vegetation features.


Sign in / Sign up

Export Citation Format

Share Document