A comprehensive improved coordinated control strategy for a STATCOM integrated HVDC system with enhanced steady/transient state behaviors

Author(s):  
Puyu Wang ◽  
Yongkun Wang ◽  
Ningqiang Jiang ◽  
Wei Gu
2021 ◽  
Vol 1754 (1) ◽  
pp. 012095
Author(s):  
Chang Lin ◽  
Jiapei Zhou ◽  
Rui Zeng ◽  
Baohong Li ◽  
Qin Jiang

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 28 ◽  
Author(s):  
Bo Pang ◽  
Hui Dai ◽  
Feng Li ◽  
Heng Nian

For improving the performance of a doubly fed induction generator (DFIG) system under a harmonically distorted grid, this paper proposes a coordinated control strategy which is effective for grid inter-harmonics as well as grid integer harmonics. In order to suppress the negative impacts caused by grid harmonics, including inter-harmonics, this paper introduces an additional harmonics suppression controller, which contains a Chebyshev high-pass filter and a modified lead element considering the delay compensation. The proposed controller is employed in the rotor side converter (RSC) and grid side converter (GSC). Based on the proposed harmonics suppression controller, a coordinated control strategy between RSC and GSC is developed, in which the control targets, including the sinusoidal output current, constant power, or steady generator torque, can be achieved for DFIG, while GSC is responsible for maintaining the sinusoidal total current to guarantee the power quality of the grid connection. The effectiveness of the proposed method is verified by the theoretical analysis, and the experimental results derived using a 1 kW DFIG system validate the correctness of the theoretical analysis.


2013 ◽  
Vol 3 (2) ◽  
Author(s):  
Guo-Jie Li ◽  
Si-Ye Ruan ◽  
Tek Lie

AbstractA multi-terminal voltage-source-converter (VSC) based high voltage direct current (HVDC) system is concerned for its flexibility and reliability. In this study, a control strategy for multiple VSCs is proposed to auto-share the real power variation without changing control mode, which is based on “dc voltage droop” power regulation functions. With the proposed power regulation design, the multiple VSCs automatically share the real power change and the VSC-HVDC system is stable even under loss of any one converter while there is no overloading for any individual converter. Simulation results show that it is effective to balance real power for power disturbance and thus improves operation reliability for the multi-terminal VSC-HVDC system by the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document