scholarly journals Ageing effect on cyclic plasticity of a tempered martensitic steel

2007 ◽  
Vol 29 (2) ◽  
pp. 336-346 ◽  
Author(s):  
Z ZHANG ◽  
D DELAGNES ◽  
G BERNHART
2016 ◽  
Vol 258 ◽  
pp. 444-447
Author(s):  
Gulzar Seidametova ◽  
Jean Bernard Vogt ◽  
Ingrid Proriol Serre

The paper presents the description of FSMs (fatigue slip markings) and the evaluation of cyclic plasticity markings of a 12%Cr martensitic steel by AFM surface analyses. The microstructure of a 12%Cr martensitic steel, quenched and tempered in air, consists of prior austenite grains, packets, blocks, and laths. The low cycle fatigue (LCF) test at a total strain range Δεt=1.2% was interrupted at different life fractions for the surface relief investigation by AFM. The localization of FSMs relatively to the different microstructural interfaces of the studied steel was proposed. The principal FSMs, appeared in the first fatigue cycle, are likely to be localized at the packet and block boundaries, while the secondary one (appeared later at 44% of lifetime) are at the lath boundaries or in the laths. The height of principal and secondary FSMs increases constantly during LCF cycling.


2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


2015 ◽  
Vol 57 (2) ◽  
pp. 171-175
Author(s):  
Jeremie Bouquerel ◽  
Foriane Léaux ◽  
Jean-Bernard Vogt ◽  
Frederic Palleschi

2004 ◽  
Vol 46 (7-8) ◽  
pp. 363-373
Author(s):  
Hai Ni ◽  
Zhirui Wang

Alloy Digest ◽  
1964 ◽  
Vol 13 (4) ◽  

Abstract ALMAR 20 is a high nickel martensitic steel which is strengthened by precipitation hardening. It has excellent combination of strength and toughness particularly in the presence of notches and cracks. It is recommended for applications such as solid fuel rocket cases and aircraft landing gear. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-162. Producer or source: Allegheny Ludlum Corporation.


Sign in / Sign up

Export Citation Format

Share Document