An energy-based fatigue life assessment model for various metallic materials under proportional and non-proportional loading conditions

2007 ◽  
Vol 29 (4) ◽  
pp. 647-655 ◽  
Author(s):  
H JAHED ◽  
A VARVANIFARAHANI ◽  
M NOBAN ◽  
I KHALAJI
Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 423 ◽  
Author(s):  
Michał Böhm ◽  
Mateusz Kowalski ◽  
Adam Niesłony

The paper presents experimental static and fatigue tests results under random loading conditions for the bending of 0H18N9 steel. The experimental results were used in performing calculations, according to the theoretical assumptions of the spectral method of fatigue life assessment, including elastoplastic deformations. The presented solution extends the use of the spectral method for material fatigue life assessment, in terms of loading conditions, above Hooke’s law theorem. The work includes computational verification of the proposal to extend the applicability of the spectral method of determining fatigue life for the range of elastoplastic deformations. One of the aims of the proposed modification was to supplement the stress amplitudes used to calculate the probability density function of the power spectral density of the signal with correction, due to the plastic deformation and its use for notched elements. The authors have tested the method using four of the most popular probability density functions used in commercial software. The obtained results of comparisons between the experimental and calculation results show that the proposed algorithm, tested using the Dirlik, Benasciutti–Tovo, Lalanne, and Zhao–Baker models, does not overestimate fatigue life, which means that the calculations are on the safe side. The obtained results prove that the elastoplastic deformations can be applied within the frequency domain for fatigue life calculations.


Author(s):  
Jorge Silva ◽  
Hossein Ghaednia ◽  
Sreekanta Das

Pipeline is the common mode for transporting oil, gas, and various petroleum products. Aging and corrosive environment may lead to formation of various defects such as crack, dent, gouge, and corrosion. The performance evaluation of field pipelines with crack defect is important. Accurate assessment of crack depth and remaining fatigue life of pipelines with crack defect is vital for pipeline’s structural integrity, inspection interval, management, and maintenance. An experimental based research work was completed at the University of Windsor for developing a semi-empirical model for estimating the remaining fatigue life of oil and gas pipes when a longitudinal crack defect has formed. A statistical approach in conjunction with fracture mechanics was used to develop this model. Statistical analysis was undertaken on CT specimen data to develop this fatigue life assessment model. Finite element method was used for determining the stress intensity factor. The fatigue life assessment model was then validated using full-scale fatigue test data obtained from 762 mm (30 inch) diameter X65 pipe. This paper discusses the test specimens and test data obtained from this study. Development and validation of the fatigue life assessment model is also presented in this paper.


2017 ◽  
Vol 730 ◽  
pp. 516-520 ◽  
Author(s):  
Er Nian Zhao ◽  
Wei Lian Qu

The critical plane method is widely discussed because of its effectiveness for predicting the multiaxial fatigue life prediction of metallic materials under the non-proportional loading conditions. The aim of the present paper is to give a comparison of the applicability of the critical plane methods on multiaxial fatigue life prediction. A total of 205 multiaxial fatigue test data of nine kinds of metallic materials under various strain paths are adopted for the experimental verification. Results shows that the von Mises effective strain parameter and KBM critical plane parameter can give well predicted fatigue lives for multiaxial proportional loading conditions, but give poor prediction lives evaluation for multiaxial non-proportional loading conditions. However, FS parameter shows better accuracy than the KBM parameter for multiaxial fatigue prediction for both proportional and non-proportional loading conditions.


Author(s):  
Zhigang Wei ◽  
Pingsha Dong ◽  
Jeong K. Hong ◽  
Thomas P. Forte

In this paper, a path-dependent maximum range (PDMR) multi-axial cycle counting method is presented for performing fatigue life assessment of engineering components under general variable-amplitude multi-axial loading conditions. The PDMR method has two distinct features: (a) multi-axial cycle counting, in which the cycle counting is conducted in an equivalent stress or strain space, and (b) explicit loading path dependency. For uniaxial loading data, the PDMR and the ASTM standard Rainflow methods both generate the same counting results. The path-length, a function of both normal and shear stress components on a critical crack plane, is proposed as a fatigue damage parameter for ductile materials. PDMR can be applied to welded structures, in which the crack plane is usually known in advance, as well as to non-welded structures, in which the critical plane approach can be implemented into PDMR to determine both the fatigue crack orientation and the associated fatigue damage. The effectiveness and robustness of the PDMR method have been validated by its ability to correlate nominal stress and Battelle structural stress fatigue data including pure-bending, pure-torsion, in-phase, and out-of-phase loading conditions for welded tube-to-flange steel structures. The relationship between the data correlations based on nominal stress and Battelle structural stress for these loading conditions is illustrated. Finally, one-parameter and two-parameter equivalency approaches for PDMR operation are also introduced and discussed.


Sign in / Sign up

Export Citation Format

Share Document