scholarly journals Simulation of multiaxial fatigue strength of steel component treated by surface induction hardening and comparison with experimental results

2011 ◽  
Vol 33 (8) ◽  
pp. 1040-1047 ◽  
Author(s):  
T. Palin-Luc ◽  
D. Coupard ◽  
C. Dumas ◽  
P. Bristiel
Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
František Fojtík ◽  
Jan Papuga ◽  
Martin Fusek ◽  
Radim Halama

The paper describes results of fatigue strength estimates by selected multiaxial fatigue strength criteria in the region of high-cycle fatigue, and compares them with own experimental results obtained on hollow specimens made from ČSN 41 1523 structural steel. The specimens were loaded by various combinations of load channels comprising push–pull, torsion, bending and inner and outer pressures. The prediction methods were validated on fatigue strengths at seven different numbers of cycles spanning from 100,000 to 10,000,000 cycles. No substantial deviation of results based on the selected lifetime was observed. The PCRN method and the QCP method provide best results compared with other assessed methods. The results of the MMP criterion that allows users to evaluate the multiaxial fatigue loading quickly are also of interest because the method provides results only slightly worse than the two best performing solutions.


2008 ◽  
Vol 131 (2) ◽  
Author(s):  
Zengliang Gao ◽  
Tianwen Zhao ◽  
Xiaogui Wang ◽  
Yanyao Jiang

Uniaxial, torsion, and axial-torsion fatigue experiments were conducted on a pressure vessel steel, 16MnR, in ambient air. The uniaxial experiments were conducted using solid cylindrical specimens. Axial-torsion experiments employed thin-walled tubular specimens subjected to proportional and nonproportional loading. The true fracture stress and strain were obtained by testing solid shafts under monotonic torsion. Experimental results reveal that the material under investigation does not display significant nonproportional hardening. The material was found to display shear cracking under pure shear loading but tensile cracking under tension-compression loading. Two critical plane multiaxial fatigue criteria, namely, the Fatemi–Socie criterion and the Jiang criterion, were evaluated based on the experimental results. The Fatemi–Socie criterion combines the maximum shear strain amplitude with a consideration of the normal stress on the critical plane. The Jiang criterion makes use of the plastic strain energy on a material plane as the major contributor to the fatigue damage. Both criteria were found to correlate well with the experiments in terms of fatigue life. The predicted cracking directions by the criteria were less satisfactory when comparing with the experimentally observed cracking behavior under different loading conditions.


2016 ◽  
Vol 9 (4) ◽  
pp. 1269-1291 ◽  
Author(s):  
Filippo Berto ◽  
Abedin Gagani ◽  
Raffaella Aversa ◽  
Relly Victoria V. Petrescu ◽  
Antonio Apicella ◽  
...  

1985 ◽  
Vol 21 (6) ◽  
pp. 291-292
Author(s):  
M. G. Kurmashov ◽  
K. N. Sapunov ◽  
R. M. Kurmashev

2011 ◽  
Vol 101-102 ◽  
pp. 909-912
Author(s):  
Guo Ying Zeng ◽  
Deng Feng Zhao

The three-dimensional vibratory strengthening and polishing technology was used to strengthen and polish aeroengine blades with complicated surfaces. At first, the principle of the strengthening and polishing process was introduced, which combined strengthening process with polishing process. Then, the technological parameters influenced on the surface quality were investigated. The principal variables were the media hardness, the frequency and amplitude of the vibration, and duration of the vibratory strengthening and polishing. The optimum parameters were obtained. Experimental results revealed that, after strengthening and polishing, the surface roughness of aeroengine blades was reduced from Ra0.35-0.5μm to Ra0.1-0.12μm, and fatigue strength was increased by approximately 50%.


Author(s):  
M H Kim ◽  
H J Kim ◽  
J H Han ◽  
J M Lee ◽  
Y D Kim ◽  
...  

The purpose of this study is to investigate the fatigue strength of butt-welded joints with special attention paid to employing different kinds of backing plates. The effect of the under-matched weld was also considered. Four different cases of backing scenarios for butt-welded specimens such as steel backing, ceramic backing, CMT (no backing by cold metal transfer) and UM (under-matched welded specimen) were investigated. A series of fatigue tests was performed to compare the fatigue strength of butt-welded joints with respect to different backing scenarios. Effective notch stress was used for the interpretation of fatigue strength of butt-welded specimens with backing plates based on finite element analyses for calculating fatigue notch factors. When results were presented from the effective notch stress, all backing scenarios considered in this study exhibited the fatigue strengths corresponding to the FAT 225 curve. From the experimental results of this study, it was determined that the fatigue strengths of butt-welded joints were found to be in the order of CMT, ceramic backing, UM, and steel backing. No significant decrease in fatigue strength, however, was observed when backing plates were steel backing and ceramic backing types.


Sign in / Sign up

Export Citation Format

Share Document