Lactobacillus delbrueckii subsp lactis strain CIDCA 133 inhibits nitrate reductase activity of Escherichia coli

2006 ◽  
Vol 111 (3) ◽  
pp. 191-196 ◽  
Author(s):  
A.A. Hugo ◽  
G.L. De Antoni ◽  
P.F. Pérez
1982 ◽  
Vol 68 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Abdelbaset Anwer El-Aaser ◽  
Mahmoud Mohamed El-Merzabani ◽  
Nadia Ahmed Higgy ◽  
Abdel E. El-Habet

A correlation was obtained between a positive nitrite test in urine and the severity of urinary bacterial infection. Bacteria isolated from the urine of bilharzial or bladder cancer patients were found to be rich in nitrate reductase activity. « Escherichia coli » was the most common microorganism isolated from these specimens. Urine and several urinary constituents activate bacterial nitrate reductase. β-Glucuronidase activity in the urine of patients with chronic « Schistosoma haematobium » infection and bladder cancer was measured and shown to be significantly greater than that of urine of normal control subjects. Urinary bacterial infection was shown to be the source of the increased urinary level of enzyme activity at pH 7.0.


FEBS Letters ◽  
1978 ◽  
Vol 95 (2) ◽  
pp. 290-294 ◽  
Author(s):  
Gérard Giordano ◽  
Alec Graham ◽  
David H. Boxer ◽  
Bruce A. Haddock ◽  
Edgard Azoulay

2002 ◽  
Vol 184 (5) ◽  
pp. 1314-1323 ◽  
Author(s):  
Valley Stewart ◽  
Yiran Lu ◽  
Andrew J. Darwin

ABSTRACT Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of Φ(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that Φ(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme.


1979 ◽  
Vol 184 (1) ◽  
pp. 45-50 ◽  
Author(s):  
E Cadenas ◽  
P B Garland

We have used the penicillin selection method of Autissier & Kepes [(1972) Biochimie 54, 93–101] to study the segregation of membrane-bound respiratory nitrate reductase (EC 1.9.6.1) in Escherichia coli for the three generations after cessation of nitrate reductase synthesis caused by withdrawal of nitrate from the growth medium. We also included a physical separation procedure that permitted direct assay for nitrate reductase activity among all fractions produced by the penicillin selection method. We conclude that the segregation of nitrate reductase after cell division is dispersive, and not semi-conservative as proposed by Autissier & Kepes (1972).


2002 ◽  
Vol 383 (2) ◽  
pp. 319-323 ◽  
Author(s):  
C. Sandu ◽  
R. Brandsch

AbstractFive moeA mutants were generated by replacing some conserved amino acids of MoeA by sitedirected mutagenesis. The mutants were assayed for the ability to restore in vivo nitrate reductase activity of the moeA mutant Escherichia coli JRG97 and in vitro Neurospora crassa nit-1 nitrate reductase activity. The replacements Asp59AlaGly60Ala, Asp259Ala, Pro298AlaPro301Ala abolished the function of MoeA in Momolybdopterin formation and stabilization, reflected in the inability to restore nitrate reductase activity. The replacements Gly251AlaGly252Ala reduced, and that of Pro283Ala had no effect, on nitrate reductase activity. E. coli JRG97 cells transformed with mutants that failed to restore nitrate reductase activity showed by HPLC analysis a decreased level of molybdopterinderived dephospho FormA as compared to bacteria transformed with wildtype moeA. The effects of the amino acid replacements on MoeA function may be explained in correlation with the MoeA crystal structure.


Sign in / Sign up

Export Citation Format

Share Document