scholarly journals Evaluation of the Gauss-Eyring model to predict thermal inactivation of micro-organisms at short holding times

2017 ◽  
Vol 263 ◽  
pp. 47-60 ◽  
Author(s):  
R.A.H. Timmermans ◽  
H.C. Mastwijk ◽  
M.N. Nierop Groot ◽  
M.A.J.S. Van Boekel
Author(s):  
L. Reimer

Most information about a specimen is obtained by elastic scattering of electrons, but one cannot avoid inelastic scattering and therefore radiation damage by ionisation as a primary process of damage. This damage is a dose effect, being proportional to the product of lectron current density j and the irradiation time t in Coul.cm−2 as long as there is a negligible heating of the specimen.Therefore one has to determine the dose needed to produce secondary damage processes, which can be measured quantitatively by a chemical or physical effect in the thin specimen. The survival of micro-organisms or the decrease of photoconductivity and cathodoluminescence are such effects needing very small doses (see table).


2014 ◽  
Vol 56 ◽  
pp. 207-219 ◽  
Author(s):  
Chi L.L. Pham ◽  
Ann H. Kwan ◽  
Margaret Sunde

Amyloids are insoluble fibrillar protein deposits with an underlying cross-β structure initially discovered in the context of human diseases. However, it is now clear that the same fibrillar structure is used by many organisms, from bacteria to humans, in order to achieve a diverse range of biological functions. These functions include structure and protection (e.g. curli and chorion proteins, and insect and spider silk proteins), aiding interface transitions and cell–cell recognition (e.g. chaplins, rodlins and hydrophobins), protein control and storage (e.g. Microcin E492, modulins and PMEL), and epigenetic inheritance and memory [e.g. Sup35, Ure2p, HET-s and CPEB (cytoplasmic polyadenylation element-binding protein)]. As more examples of functional amyloid come to light, the list of roles associated with functional amyloids has continued to expand. More recently, amyloids have also been implicated in signal transduction [e.g. RIP1/RIP3 (receptor-interacting protein)] and perhaps in host defence [e.g. aDrs (anionic dermaseptin) peptide]. The present chapter discusses in detail functional amyloids that are used in Nature by micro-organisms, non-mammalian animals and mammals, including the biological roles that they play, their molecular composition and how they assemble, as well as the coping strategies that organisms have evolved to avoid the potential toxicity of functional amyloid.


1913 ◽  
Vol 108 (5) ◽  
pp. 115-115
Author(s):  
Alfred Gradenwitz
Keyword(s):  
X Ray ◽  

1997 ◽  
Vol 78 (05) ◽  
pp. 1372-1380 ◽  
Author(s):  
André L Fuly ◽  
Olga L T Machado ◽  
Elias W Alves ◽  
Célia R Carlinis

SummaryCrude venom from Lachesis muta exhibited procoagulant, proteolytic and phospholipase A2 activities. A phospholipase A2, denoted LM-PLA2 was purified from L. muta venom to homogeneity, through a combination of chromatographic steps involving gel-filtration on Sephacryl S-200 HR and reverse phase chromatography on a C2/C18 column. LM-PLA2 presented a single polypeptide chain with an isoelectric point at pH 4.7 and apparent molecular weight of 17 kDa. Partial aminoacid sequence indicated a high degree of homology for LM-PLA2 with other PLA2 from different sources.LM-PLA2 displayed a potent enzymatic activity as measured by indirect hemolysis of red blood cells but it was neither lethal when injected i.p. into mice nor did it present anticoagulant activity. Furthermore, LM-PLA2 displayed a moderate inhibitory activity on the aggregation of rabbit platelets induced by low levels of ADP, thrombin and arachidonate. In contrast, platelet aggregation induced by high doses of collagen was strongly inhibited by LM-PLA2 as well as ATP-release. Treatment of the protein with p-bromophenacyl bromide or 2-mercapto-ethanol, as well as thermal inactivation studies, suggested that the platelet inhibitory effect of LM-PLA2 is dependent on its enzymatic activity. Thus, the platelet inhibitory activity of LM-PLA2 was shown to be dependent on the hydrolysis of plasma phospholipids and/or lipoproteins, most probably those rich in phosphatidylcholine. Surprisingly, lyso-phosphatidylcholine released by LM-PLA2 from plasma was shown to preferentially inhibited collagen-induced platelet aggregation, in contrast to other PLA2s, whose plasma hydrolytic products indistinctly affect platelet’s response to several agonists.


Sign in / Sign up

Export Citation Format

Share Document