fouling communities
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 31)

H-INDEX

21
(FIVE YEARS 3)

Diversity ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 6
Author(s):  
Alexander G. Dvoretsky ◽  
Vladimir G. Dvoretsky

Crabs are important ecosystem engineers in marine habitats worldwide. Based on long-term data, we analyzed the species composition and infestation indices of epibionts and symbionts colonizing the great spider crab, Hyas araneus, and two lithodid crabs—the northern stone crab, Lithodes maja, and the red king crab, Paralithodes camtschaticus—in the coastal zone of the Barents Sea. The epibiotic communities found on great spider crabs were closer to northern stone crabs (33%) compared to red king crabs (25%). The prevalence of mobile symbionts (amphipods, Ischyrocerus, and polychaetes, Harmothoe) and common epibionts, such as barnacles and hydrozoans, was low on great spider crabs and high on the body and in the gills of lithodid crabs. Epiphytes were abundant on great spider crabs but not present on both species of lithodid crabs. Egg symbionts found on H. araneus and P. camtschaticus do not affect their local populations. Differences in the fouling communities found on the three crab species are associated with host size range, surface properties of their carapaces, and behavior patterns.


2021 ◽  
Vol 51 (6) ◽  
Author(s):  
Tainã G. Loureiro ◽  
Koebraa Peters ◽  
Tamara B. Robinson
Keyword(s):  

2021 ◽  
Author(s):  
Ryan Amir Beshai ◽  
Danny Truong ◽  
Amy Henry ◽  
Cascade Sorte

Abstract High community diversity may either prevent or promote the establishment of exotic species. The biotic resistance hypothesis holds that species-rich communities are more resistant to invasion than species-poor communities due to greater interspecific competition. Conversely, the invasional meltdown hypothesis proposes that greater exotic diversity increases invasibility via facilitative interactions between exotic species. To evaluate the degree to which biotic resistance or invasional meltdown influences marine community structure during the assembly period, we studied the development of marine epibenthic “fouling” communities at two southern California harbors. We found that fewer exotic species established as total and exotic richness increased during community assembly and that this effect remained after accounting for space availability. We also found that changes in exotic abundance decreased over time. Throughout the assembly period, gains in exotic abundance were greatest when space was abundant and richness was low. Altogether, we found greater support for biotic resistance than invasional meltdown, suggesting that both native and exotic species contribute to biotic resistance during early community development. However, this resistance may not reduce the total dominance of exotic species.


Biofouling ◽  
2021 ◽  
pp. 1-14
Author(s):  
Okko Outinen ◽  
Riikka Puntila-Dodd ◽  
Ieva Barda ◽  
Radosław Brzana ◽  
Joanna Hegele-Drywa ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 1121
Author(s):  
Lydia Png-Gonzalez ◽  
Patrício Ramalhosa ◽  
Ignacio Gestoso ◽  
Soledad Álvarez ◽  
Natacha Nogueira

Globally, there is growing concern regarding the effects of the increasing anthropogenic pressures in marine communities. Artificial structures such as marinas and aquaculture facilities serve as invasion hotspots; hence, monitoring fouling communities on these structures can be valuable for detecting new invasions. In the current study, 24 settlement PVC plates were deployed for three months to compare the recruitment ability of these two artificial environments along the south coast of the offshore island of Madeira (NE Atlantic). The results showed higher variations in the species richness between regions (SW vs. SE) than between artificial habitats (sea-cages vs. marinas), although the community composition differed. Cnidaria and Bryozoa were the most representative groups in the aquaculture systems, while Bryozoa and Chordata were in the marinas. A sum of 18 NIS was recorded for the study, accounting for between 21.88% and 54.84% of the total number of species in the aquaculture facilities and marinas, respectively. The higher NIS percentage from the marinas was even more explicit in the SE coast, where Cradoscrupocellaria bertholletii, Parasmittina alba, and Botrylloides niger distinctly dominated fouling populations. The results suggest that at least some particular NIS previously reported in the studied marinas successfully colonized sea-cages. Future assessments need to address the potential role of aquaculture facilities as drivers for the secondary spread of NIS. Additionally, two new records are considered for Madeira: Eudendrium capillare and Ericthonius punctatus.


Oceanography ◽  
2021 ◽  
Vol 34 (3) ◽  
Author(s):  
Alexandra Chava ◽  
◽  
Anna Gebruk ◽  
Glafira Kolbasova ◽  
Artem Krylov ◽  
...  

Biofouling of artificial substrates is a well-known phenomenon that can negatively impact offshore industry operations as well as data collection in the ocean. Fouling communities worldwide have mostly been studied within the top 50 m of the ocean surface, while biofouling below this depth remains largely underreported. Existing methods used to study biofouling are labor intensive and expensive when applied to the deep sea. Here, we propose a simple and cost-effective modification of traditional methods for studying biofouling by mounting test plates on autonomous seafloor equipment and preserving them in ethanol upon retrieval for transport to the laboratory. This method can greatly advance our understanding of biofouling processes in the deeper ocean, including fouling community biodiversity, recruitment, and seasonality. We present two case studies from the Laptev Sea and the Sea of Okhotsk in support of this method. In the first study, we looked at fouling communities on the surfaces of ocean-bottom seismometers deployed for one year in the 36–350 m depth range. In the second study, we tested metal and plexiglass (poly(methyl methacrylate) plates mounted on autonomous bottom stations and found evidence of both micro- and macrofouling after three months of deployment. Our results demonstrate that various autonomous seafloor equipment can be used as supporting platforms for biofouling studies.


2021 ◽  
Vol 14 (5) ◽  
pp. 536-545
Author(s):  
L. L. Smirnova ◽  
A. A. Koshkarov ◽  
O. S. Sizova

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2227
Author(s):  
Andrea Desiderato ◽  
Jan Beermann ◽  
Maria Angelica Haddad ◽  
Luciano Felicio Fernandes

Epibiotic associations can result in co-introductions of non-indigenous species, which may affect ecosystems in several ways. In fouling communities of three estuaries in southern Brazil, a number of amphipods was found to harbour a dense coverage of epibionts. Three different species, the two globally widespread caprellids Caprella equilibra and Paracaprella pusilla, as well as the ischyrocerid Jassa valida, had been colonised by diatoms. Further scanning electron microscope analyses assigned these diatoms to 14 different species that had previously been reported from benthic habitats. This is one of the scarce records of diatoms attached to amphipods. The occurrence of the diatom Amphora helenensis represents the first report for Brazilian waters as well as the second record for the whole SW Atlantic Ocean. As some diatoms were associated with common fouling amphipods, a possible regional spread aided by these crustaceans seems likely. Possible effects of this amphipod-diatom association on the animals and their implications for the underlying ecosystems of this remain to be elucidated.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marco Tamburini ◽  
Erica Keppel ◽  
Agnese Marchini ◽  
Michele F. Repetto ◽  
Gregory M. Ruiz ◽  
...  

Baseline port monitoring for fouling communities is an essential tool to assess non-indigenous species (NIS) introduction and spread, but a standardized and coordinated method among Mediterranean and European countries has not yet been adopted. In this context, it is important to test monitoring protocols that allow for the collection of standardized and directly comparable data, replicated across time and space. Here, for the first time in the Mediterranean Sea, we tested a standardized protocol developed by the Smithsonian Environmental Research Center (SERC) and used now in several countries. The 3-year monitoring survey (2018–2020) was conducted in the Gulf of La Spezia (Ligurian Sea, Italy), with the deployment of a total of 50 PVC panels per year in five different sites (a commercial harbor, three marinas and a site in the proximity of a shellfish farm). A total of 79 taxa were identified, including 11 NIS, ranging from zero to seven NIS for each panel. In comparison with previous surveys, new NIS arrivals were observed in the Gulf of La Spezia: Botrylloides cf. niger, Branchiomma sp., Branchiomma luctuosum, Paraleucilla magna, and Watersipora arcuata. At the end of the 3-year monitoring, mean richness? and percent cover of NIS were measured, and both measures differed across the monitoring sites, with higher values in two marinas and in the commercial harbor. Among years, richness of NIS was relatively stable at each monitoring site. The structure of the fouling was influenced more by native and cryptogenic species than by NIS. Moreover, among the monitoring sites, the density of artificial structures was not a reliable predictor or proxy for local NIS abundance. This first application of the SERC method in the Mediterranean Sea, demonstrates both pros and cons, including the detection of new NIS reported here. Further direct comparisons with other NIS monitoring tools are recommended, and additional tests to assess its effectiveness in this biogeographical area are encouraged. A broader application of this and other standard methods across temporal and spatial scales in the Mediterranean basin should be implemented, providing critical data needed to assess changes in the structure of fouling communities.


Sign in / Sign up

Export Citation Format

Share Document