Augmented Reality as a research tool: investigating cognitive-motor dual-task during outdoor navigation

Author(s):  
Federica NENNA ◽  
Marco ZORZI ◽  
Luciano GAMBERINI
2020 ◽  
Vol 1529 ◽  
pp. 022098
Author(s):  
Syed Muhammad Hazry Asraf ◽  
Ameer Fuhaili Mohamad Hashim ◽  
Syed Zulkarnain Syed Idrus

2021 ◽  
Author(s):  
Marco Canciani ◽  
Giovanna Spadafora ◽  
Mauro Saccone ◽  
Antonio Camassa

2021 ◽  
Vol 102 ◽  
pp. 04002
Author(s):  
Ryohei Hashimoto ◽  
Michael Cohen

Mobile map applications such as Google Maps often don’t provide detailed information about facility areas such as amusement parks and university campuses. In addition, there are some people who cannot reach their destination just by reading a flat map. Therefore, in this research, we have developed an AR (Augmented Reality) navigation application for facilities to solve these problems. In addition, by using Kalman filtering to estimate user position, we could improve the accuracy of AR objects display.


2021 ◽  
Vol 11 (16) ◽  
pp. 7515
Author(s):  
Fangfang Lu ◽  
Hao Zhou ◽  
Lingling Guo ◽  
Jingjing Chen ◽  
Licheng Pei

Currently, the route planning functions in 2D/3D campus navigation systems in the market are unable to process indoor and outdoor localization information simultaneously, and the UI experiences are not optimal because they are limited by the service platforms. An ARCore-based augmented reality campus navigation system is designed in this paper in order to solve the relevant problems. Firstly, the proposed campus navigation system uses ARCore to enhance reality by presenting 3D information in real scenes. Secondly, a visual inertial ranging algorithm is proposed for real-time locating and map generating in mobile devices. Finally, rich Unity3D scripts are designed in order to enhance users’ autonomy and enjoyment during navigation experience. In this paper, indoor navigation and outdoor navigation experiments are carried out at the Lingang campus of Shanghai University of Electric Power. Compared with the AR outdoor navigation system of Gaode, the proposed AR system can achieve increased precise outdoor localization by deploying the visual inertia odometer on the mobile phone and realizes the augmented reality function of 3D information and real scene, thus enriching the user’s interactive experience. Furthermore, four groups of students have been selected for system testing and evaluation. Compared with traditional systems, such as Gaode map or Internet media, experimental results show that our system could facilitate the effectiveness and usability of learning on campus.


Author(s):  
Willem H.J. Andersen

Electron microscope design, and particularly the design of the imaging system, has reached a high degree of perfection. Present objective lenses perform up to their theoretical limit, while the whole imaging system, consisting of three or four lenses, provides very wide ranges of magnification and diffraction camera length with virtually no distortion of the image. Evolution of the electron microscope in to a routine research tool in which objects of steadily increasing thickness are investigated, has made it necessary for the designer to pay special attention to the chromatic aberrations of the magnification system (as distinct from the chromatic aberration of the objective lens). These chromatic aberrations cause edge un-sharpness of the image due to electrons which have suffered energy losses in the object.There exist two kinds of chromatic aberration of the magnification system; the chromatic change of magnification, characterized by the coefficient Cm, and the chromatic change of rotation given by Cp.


2019 ◽  
Vol 62 (7) ◽  
pp. 2099-2117 ◽  
Author(s):  
Jason A. Whitfield ◽  
Zoe Kriegel ◽  
Adam M. Fullenkamp ◽  
Daryush D. Mehta

Purpose Prior investigations suggest that simultaneous performance of more than 1 motor-oriented task may exacerbate speech motor deficits in individuals with Parkinson disease (PD). The purpose of the current investigation was to examine the extent to which performing a low-demand manual task affected the connected speech in individuals with and without PD. Method Individuals with PD and neurologically healthy controls performed speech tasks (reading and extemporaneous speech tasks) and an oscillatory manual task (a counterclockwise circle-drawing task) in isolation (single-task condition) and concurrently (dual-task condition). Results Relative to speech task performance, no changes in speech acoustics were observed for either group when the low-demand motor task was performed with the concurrent reading tasks. Speakers with PD exhibited a significant decrease in pause duration between the single-task (speech only) and dual-task conditions for the extemporaneous speech task, whereas control participants did not exhibit changes in any speech production variable between the single- and dual-task conditions. Conclusions Overall, there were little to no changes in speech production when a low-demand oscillatory motor task was performed with concurrent reading. For the extemporaneous task, however, individuals with PD exhibited significant changes when the speech and manual tasks were performed concurrently, a pattern that was not observed for control speakers. Supplemental Material https://doi.org/10.23641/asha.8637008


ASHA Leader ◽  
2013 ◽  
Vol 18 (9) ◽  
pp. 14-14 ◽  
Keyword(s):  

Amp Up Your Treatment With Augmented Reality


Sign in / Sign up

Export Citation Format

Share Document