scholarly journals Outdoor Navigation System by AR

2021 ◽  
Vol 102 ◽  
pp. 04002
Author(s):  
Ryohei Hashimoto ◽  
Michael Cohen

Mobile map applications such as Google Maps often don’t provide detailed information about facility areas such as amusement parks and university campuses. In addition, there are some people who cannot reach their destination just by reading a flat map. Therefore, in this research, we have developed an AR (Augmented Reality) navigation application for facilities to solve these problems. In addition, by using Kalman filtering to estimate user position, we could improve the accuracy of AR objects display.

2021 ◽  
Vol 11 (16) ◽  
pp. 7515
Author(s):  
Fangfang Lu ◽  
Hao Zhou ◽  
Lingling Guo ◽  
Jingjing Chen ◽  
Licheng Pei

Currently, the route planning functions in 2D/3D campus navigation systems in the market are unable to process indoor and outdoor localization information simultaneously, and the UI experiences are not optimal because they are limited by the service platforms. An ARCore-based augmented reality campus navigation system is designed in this paper in order to solve the relevant problems. Firstly, the proposed campus navigation system uses ARCore to enhance reality by presenting 3D information in real scenes. Secondly, a visual inertial ranging algorithm is proposed for real-time locating and map generating in mobile devices. Finally, rich Unity3D scripts are designed in order to enhance users’ autonomy and enjoyment during navigation experience. In this paper, indoor navigation and outdoor navigation experiments are carried out at the Lingang campus of Shanghai University of Electric Power. Compared with the AR outdoor navigation system of Gaode, the proposed AR system can achieve increased precise outdoor localization by deploying the visual inertia odometer on the mobile phone and realizes the augmented reality function of 3D information and real scene, thus enriching the user’s interactive experience. Furthermore, four groups of students have been selected for system testing and evaluation. Compared with traditional systems, such as Gaode map or Internet media, experimental results show that our system could facilitate the effectiveness and usability of learning on campus.


2011 ◽  
Vol 131 (7) ◽  
pp. 897-906
Author(s):  
Kengo Akaho ◽  
Takashi Nakagawa ◽  
Yoshihisa Yamaguchi ◽  
Katsuya Kawai ◽  
Hirokazu Kato ◽  
...  

2020 ◽  
Author(s):  
Faiella Eliodoro ◽  
Pacella Giuseppina ◽  
Altomare Carlo ◽  
Andresciani Flavio ◽  
Zobel Beomonte Bruno ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2315
Author(s):  
Yu-Cheng Lo ◽  
Guan-An Chen ◽  
Yin Chun Liu ◽  
Yuan-Hou Chen ◽  
Jui-Ting Hsu ◽  
...  

To improve the accuracy of bracket placement in vivo, a protocol and device were introduced, which consisted of operative procedures for accurate control, a computer-aided design, and an augmented reality–assisted bracket navigation system. The present study evaluated the accuracy of this protocol. Methods: Thirty-one incisor teeth were tested from four participators. The teeth were bonded by novice and expert orthodontists. Compared with the control group by Boone gauge and the experiment group by augmented reality-assisted bracket navigation system, our study used for brackets measurement. To evaluate the accuracy, deviations of positions for bracket placement were measured. Results: The augmented reality-assisted bracket navigation system and control group were used in the same 31 cases. The priority of bonding brackets between control group or experiment group was decided by tossing coins, and then the teeth were debonded and the other technique was used. The medium vertical (incisogingival) position deviation in the control and AR groups by the novice orthodontist was 0.90 ± 0.06 mm and 0.51 ± 0.24 mm, respectively (p < 0.05), and by the expert orthodontist was 0.40 ± 0.29 mm and 0.29 ± 0.08 mm, respectively (p < 0.05). No significant changes in the horizontal position deviation were noted regardless of the orthodontist experience or use of the augmented reality–assisted bracket navigation system. Conclusion: The augmented reality–assisted bracket navigation system increased the accuracy rate by the expert orthodontist in the incisogingival direction and helped the novice orthodontist guide the bracket position within an acceptable clinical error of approximately 0.5 mm.


2012 ◽  
Vol 180 (2) ◽  
pp. 43-54 ◽  
Author(s):  
Kengo Akaho ◽  
Takashi Nakagawa ◽  
Yoshihisa Yamaguchi ◽  
Katsuya Kawai ◽  
Hirokazu Kato ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Eimei Oyama ◽  
Kohei Tokoi ◽  
Ryo Suzuki ◽  
Sousuke Nakamura ◽  
Naoji Shiroma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document