The enhancement of steam condensation heat transfer in a horizontal shell and tube condenser by addition of ammonia

2004 ◽  
Vol 47 (17-18) ◽  
pp. 3683-3693 ◽  
Author(s):  
Chris Philpott ◽  
Joe Deans
Author(s):  
Abhinav Bhanawat ◽  
Mahesh Kumar Yadav ◽  
Maneesh Punetha ◽  
Sameer Khandekar ◽  
Pavan K. Sharma

Abstract Empirical/semi-empirical correlations are available in the literature to quantify the effect of several major parameters, like bulk pressure, non-condensable gas mass fraction, and wall subcooling, on condensation heat transfer coefficient (HTC). However, despite numerous applications of condensation on inclined flat plates, there is a lack of understanding of the effect of surface inclination on condensation heat transfer. Accordingly, a dedicated experimental program was undertaken to investigate the effect of surface inclination angle on filmwise steam condensation. Experiments were performed at different bulk pressures (1.7–4.2 bar absolute) and steam-air mass fractions (ranging from pure steam, i.e., 0% to 40% w/w air), with the steam-air mixture flowing over a flat test plate (Re range, 4200–4800). In each run, the inclination angle of the test surface was varied from −90 deg (condensation underneath the horizontal surface, facing downward) to +90 deg (condensation over the horizontal surface, facing upward) in increments of 15–20 deg (inclination angle θ measured from vertical). The results reveal an intriguing trend: for pure steam condensation, the HTCs decrease as the plate is inclined in either direction from the vertical, and the variation is nearly symmetric for both upward- and downward-facing configurations. On the other hand, for steam condensation in the presence of air, the HTCs decrease monotonically for upward-facing configurations, while they increase slightly (10–20%), and decrease subsequently (for θ < −70 deg) for downward-facing cases. Finally, the HTCs for inclined orientations are compared with the HTC in the standard vertical configuration to quantify the effect of inclination angle.


Author(s):  
Kai Zhu

For the state of condensation in tube, liquid condensate separation in middle process can prolong the state of steam entrance region of higher heat transfer coefficient. It is called short-tube effect theory. Combined with the traditional condenser, a shell and tube condenser was designed for experiment research in this paper, and compared with the traditional condenser by opening liquid distribution pipes arranged in both sides of condenser. The results showed that liquid distribution pipes with different diameter have different condensation effect. Under the same steam flow rate of inlet, liquid distribution pipes with different combination of diameter and number indicated that its coefficient of heat transfer are higher than the traditional heat transfer by 14.2%, 15.5% and 25.1%. This result illustrated that heat exchange efficiency of a shell and tube condenser with liquid distribution pipes is better than a traditional condenser.


2020 ◽  
Vol 24 (06) ◽  
pp. 115-126
Author(s):  
Mohammed Ghazi M. Kamil ◽  
◽  
Muna Sabah Kassim ◽  
Louay Abd Alazez Mahdi ◽  
◽  
...  

The heat transfer coefficient of steam condensation has a significant role in the performance of air-cooled heat exchangers. The purpose of this work is to predict the local/average local steam condensation heat transfer coefficient inside the horizontal flattened tube under vacuum conditions using numerous correlations that were developed by some researches which have been conducted under specified conditions. The results from these correlations have been compared with experimental data of Davies, therefore more investigate for the values are necessary to improve or/and validate the existing correlations. The effect of such parameters like the uniform heat flux and saturation temperature also have been studied on the local steam condensation heat transfer coefficient as the results show that the heat transfer coefficient decrease as the heat flux increase, while it increases as the steam saturated temperature increase.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950009
Author(s):  
Nae-Hyun Kim ◽  
Ho-Seung Han

It is well known that dropwise condensation enhances the condensation heat transfer coefficient significantly compared with film condensation. In the present study, dropwise condensation heat transfer characteristics on titanium corrugated tubes were investigated. Two corrugated tubes with different corrugation pitch and depth were tested at the steam pressures of 5 and 10[Formula: see text]kPa. To promote dropwise condensation, silane-based SAM was coated. For bare corrugated tubes, significant enhancement of condensation heat transfer was noted, especially for the 2.1/0.2 (corrugation pitch/corrugation depth in mm) tube. For SAM-coated tubes, the heat transfer enhancement was significant (2.61 at 5[Formula: see text]kPa and 2.45 at 10[Formula: see text]kPa) for the smooth tube. For the corrugated tubes, however, the enhancement decreased to 1.78 and 2.22 for 8.7/0.4 tube and to 1.26 and 1.52 for 2.1/0.2 tube. The present results suggest that corrugations may not be as an effective heat transfer method for dropwise condensation as it is for film condensation. This result was supported by the photos taken by mist spray, which suggested that surface tension drained condensation by corrugations is not a major heat transfer mechanism for dropwise condensation on corrugated tubes.


Sign in / Sign up

Export Citation Format

Share Document