liquid condensate
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Manisha Poudyal ◽  
Komal Patel ◽  
Ajay Singh Sawner ◽  
Laxmikant Gadhe ◽  
Pradeep Kadu ◽  
...  

Liquid-liquid phase separation (LLPS) has emerged as a crucial biological mechanism for sequestering macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides at their high intermolecular interaction regime. To examine this, we studied many (a total of 23) proteins/polypeptides with different structures and sequences for LLPS study using molecular crowder polyethylene glycol (PEG-8000). We showed that all proteins and even highly charged polypeptides (under study) can undergo liquid condensate formation, however with different phase space and conditions. Using a single component and combinations of protein multicomponent (co-LLPS) systems, we establish that a variety of intermolecular interactions can drive proteins/polypeptides LLPS.


2021 ◽  
Author(s):  
Pritam Mukherjee ◽  
Prajnadipta Panda ◽  
Prasad Kasturi

Proteome imbalance can lead to protein misfolding and aggregation which is associated with pathologies. Protein aggregation can also be an active, organized process and can be exploited by cells as a survival strategy. In adverse conditions, it is beneficial to deposit the proteins in a condensate rather degrading and resynthesizing. Membrane less organelles (MLOs) are biological condensates formed through liquid liquid phase separation (LLPS), involving cellular components such as nucleic acids and proteins. LLPS is a regulated process, which when perturbed, can undergo a transition from a physiological liquid condensate to pathological solid-like protein aggregates. To understand how the MLO-associated proteins (MLO-APs) behave during aging, we performed a comparative meta analysis with age related proteome of C. elegans. We found that the MLO-APs are highly abundant throughout the lifespan. Interestingly, they are aggregating more in long-lived mutant worms compared to the age matched wildtype worms. GO term analysis revealed that the cell cycle and embryonic development are among the top enriched processes in addition to RNA metabolism RNP components. Considering antagonistic pleotropic nature of these developmental genes and post mitotic status of C. elegans, we assume that these proteins phase transit during post development. As the organism ages, these MLO-APs either mature to become more insoluble or dissolve in uncontrolled manner. However, in the long-lived daf-2 mutant worms, the MLOs may attain protective states due to enhanced proteostasis components and altered metabolism that eventually make these worms more protected.


Science ◽  
2021 ◽  
Vol 373 (6554) ◽  
pp. 529.15-531
Author(s):  
Di Jiang
Keyword(s):  

Author(s):  
Vishnu Nair ◽  
Thijs Heus ◽  
Maarten van Reeuwijk

AbstractInterfaces at the edge of an idealised, non-precipitating, warm cloud are studied using Direct Numerical Simulation (DNS) complemented with a Lagrangian particle tracking routine. Once a shell has formed, four zones can be distinguished: the cloud core, visible shell, invisible shell and the environment. The union of the visible and invisible regions is the shell commonly referred to in literature. The boundary between the invisible shell and the environment is the Turbulent-NonTurbulent Interface (TNTI) which is typically not considered in cloud studies. Three million particles were seeded homogeneously across the domain and properties were recorded along individual trajectories. The results demonstrate that the traditional cloud boundary (separating cloudy and non-cloudy regions using thresholds applied on liquid condensate or updraft velocity) are some distance away from the TNTI. Furthermore, there is no dynamic difference between the traditional liquid-condensate boundary and the region extending to the TNTI. However, particles crossing the TNTI exhibit a sharp jump in enstrophy and a smooth increase in buoyancy. The traditional cloud boundary coincides with the location of minimum buoyancy in the shell. The shell pre-mixes the entraining and detraining air and analysis reveals a highly skewed picture of entrainment and detrainment at the traditional cloud boundary. A preferential entrainment of particles with velocity and specific humidity higher than the mean values in the shell is observed. Large-eddy simulation of a more realistic setup detects an interface with similar properties using the same thresholds as in the DNS, indicating that the DNS results extrapolate beyond their idealised conditions.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 571
Author(s):  
Anna Więch ◽  
Aneta Tarczewska ◽  
Andrzej Ożyhar ◽  
Marek Orłowski

The superfamily of nuclear receptors (NRs), composed of ligand-activated transcription factors, is responsible for gene expression as a reaction to physiological and environmental changes. Transcriptional machinery may require phase separation to fulfil its role. Although NRs have a similar canonical structure, their C-terminal domains (F domains) are considered the least conserved and known regions. This article focuses on the peculiar molecular properties of the intrinsically disordered F domain of the ecdysteroid receptor from the Aedes aegypti mosquito (AaFEcR), the vector of the world’s most devastating human diseases such as dengue and Zika. The His-Pro-rich segment of AaFEcR was recently shown to form the unique poly-proline helix II (PPII) in the presence of Cu2+. Here, using widefield microscopy of fluorescently labeled AaFEcR, Zn2+- and Cu2+-induced liquid-liquid phase separation (LLPS) was observed for the first time for the members of NRs. The perspectives of this finding on future research on the F domain are discussed, especially in relation to other NR members.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Georg Krainer ◽  
Timothy J. Welsh ◽  
Jerelle A. Joseph ◽  
Jorge R. Espinosa ◽  
Sina Wittmann ◽  
...  

AbstractLiquid–liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.


2021 ◽  
Vol 120 (3) ◽  
pp. 28a
Author(s):  
Georg Krainer ◽  
Timothy J. Welsh ◽  
Jerelle A. Joseph ◽  
Peter St George-Hyslop ◽  
Anthony A. Hyman ◽  
...  

2020 ◽  
Author(s):  
Thomas C. T. Michaels ◽  
L. Mahadevan ◽  
Christoph A. Weber

In living cells, liquid condensates form in the cytoplasm and nucleoplasm via phase separation and regulate physiological processes. They also regulate aberrant aggregation of amyloid fibrils, a process linked to Alzheimer’s and Parkinson’s diseases. In the absence of condensates it has been shown that amyloid aggregation can be inhibited by molecular chaperones and rationally designed drugs. However it remains unknown how this drug- or chaperone-mediated inhibition of amyloid fibril aggregation is affected by phase-separated condensates. Here we study the interplay between protein aggregation, its inhibition and liquid-liquid phase separation. Our key finding is that the potency of inhibitors of amyloid formation can be strongly enhanced. We show that the corresponding mechanism relies on the colocalization of inhibitors and aggregates inside the liquid condensate. We provide experimentally testable physicochemical conditions under which the increase of inhibitor potency is most pronounced. Our work highlights the role of spatio-temporal heterogeneity in curtailing aberrant protein aggregation and suggests design principles for amyloid inhibitors accounting for partitioning of drugs into liquid condensates.


Author(s):  
Denis L. J. Lafontaine ◽  
Joshua A. Riback ◽  
Rümeyza Bascetin ◽  
Clifford P. Brangwynne
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document