Experimental study on performance improvement of a four-bed adsorption chiller by using heat and mass recovery

2006 ◽  
Vol 49 (19-20) ◽  
pp. 3343-3348 ◽  
Author(s):  
Kim Choon Ng ◽  
Xiaolin Wang ◽  
Yee Sern Lim ◽  
Bidyut Baran Saha ◽  
Anutosh Chakarborty ◽  
...  
Author(s):  
Mahbubul Muttakin ◽  
Md. Amirul Islam ◽  
Kuldeep Singh Malik ◽  
Deepak Pahwa ◽  
Bidyut Baran Saha

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1082
Author(s):  
Ngoc Vi Cao ◽  
Xuan Quang Duong ◽  
Woo Su Lee ◽  
Moon Yong Park ◽  
Seung Soo Lee ◽  
...  

This study conducted an exergy analysis of advanced adsorption cooling cycles. The possible exergy losses were divided into internal losses and external losses, and the exergy losses of each process in three advanced cycles: a mass recovery cycle, heat recovery cycle and combined heat and mass recovery cycle were calculated. A transient two-dimensional numerical model was used to solve the heat and mass transfer kinetics. The exergy destruction of each component and process in a finned tube type, silica gel/water working paired-adsorption chiller was estimated. The results showed that external loss was significantly reduced at the expense of internal loss. The mass recovery cycle reduced the total loss to 60.95 kJ/kg, which is −2.76% lower than the basic cycle. In the heat recovery cycle, exergy efficiency was significantly enhanced to 23.20%. The optimum value was 0.1248 at a heat recovery time of 60 s. The combined heat and mass recovery cycle resulted in an 11.30% enhancement in exergy efficiency, compared to the heat recovery cycle. The enhancement was much clearer when compared to the basic cycle, with 37.12%. The observed dependency on heat recovery time and heating temperature was similar to that observed for individual mass recovery and heat recovery cycles.


Author(s):  
Vijayakumar Rajendran ◽  
Harichandran Ramasubbu ◽  
Karthick Alagar ◽  
Vignesh Kumar Ramalingam

An experimental study has been carried out to enhance a solar air heater’s performance by integrating artificial roughness through baffles on the absorber plate. In this paper, the thermal and energy matrices analysis of a Solar Air Heater (SAH) roughened with V up perforated baffles have been investigated. The effect of various mass flow rates on the SAH was analyzed with and without baffles. Experimental outputs like outlet air temperature, useful energy (heat) gain and thermal efficiency were evaluated to confirm the performance improvement. The baffled absorber plate SAH was found to give the maximum thermal efficiency and useful energy gain of 89.3% and 1321.37 W at a mass flow rate of 0.0346 kg/s, 13% and 12% higher than SAH without baffle. This result showed that the V up-shaped ribs in flow arrangement provide better thermal performance than smooth plate SAH for the parameter investigated. Energy matrices analysis and carbon dioxide mitigation of the SAH system were also analyzed.


Sign in / Sign up

Export Citation Format

Share Document