Numerical solution of film condensation from turbulent flow of vapor–gas mixtures in vertical tubes

2007 ◽  
Vol 50 (19-20) ◽  
pp. 3899-3912 ◽  
Author(s):  
M.K. Groff ◽  
S.J. Ormiston ◽  
H.M. Soliman
1971 ◽  
Vol 93 (3) ◽  
pp. 297-304 ◽  
Author(s):  
V. E. Denny ◽  
A. F. Mills ◽  
V. J. Jusionis

An analytical study of the effects of noncondensable gas on laminar film condensation of vapor under going forced flow along a vertical surface is presented. Due to the markedly nonsimilar character of the coupled two-phase-flow problem, the set of parabolic equations governing conservation of momentum, species, and energy in the vapor phase was solved by means of finite-difference methods using a forward marching technique. Interfacial boundary conditions for the numerical solution were extracted from a locally valid Nusselt-type analysis of the liquid-film behavior. Locally variable properties in the liquid were treated by means of the reference-temperature concept, while those in the vapor were treated exactly. Closure of the numerical solution at each step was effected by satisfying overall mass and energy balances on the liquid film. A general computer program for solving the problem has been developed and is applied here to condensation from water-vapor–air mixtures. Heat-transfer results, in the form q/qNu versus x, are reported for vapor velocities in the range 0.1 to 10.0 fps with the mass fraction of air ranging from 0.001 to 0.1. The temperature in the free stream is in the range 100–212 deg F, with overall temperature differences ranging from 5 to 40 deg F. The influence of noncondensable gas is most marked for low vapor velocities and large gas concentrations. The nonsimilar character of the problem is especially evident near x = 0, where the connective behavior of the vapor boundary layer is highly position-dependent.


Author(s):  
Georgii Glebovich Yankov ◽  
Vladimir Kurganov ◽  
Yury Zeigarnik ◽  
Irina Maslakova

Abstract The review of numerical studies on supercritical pressure (SCP) coolants heat transfer and hydraulic resistance in turbulent flow in vertical round tubes based on Reynolds-averaged Navier-Stokes (RANS) equations and different models for turbulent viscosity is presented. The paper is the first part of the general analysis, the works based on using algebraic turbulence models of different complexity are considered in it. The main attention is paid to Petukhov-Medvetskaya and Popov et al. models. They were developed especially for simulating heat transfer in tubes of the coolants with significantly variable properties (droplet liquids, gases, SCP fluids) under heating and cooling conditions. These predictions were verified on the entire reliable experimental data base. It is shown that in the case of turbulent flow in vertical round tubes these models make it possible predicting heat transfer and hydraulic resistance characteristics of SCP flows that agree well with the existed reliable experimental data on normal and certain modes of deteriorated heat transfer, if significant influence of buoyancy and radical flow restructuring are absent. For the more complicated cases than a flow in round vertical tubes, as well as for the case of rather strong buoyancy effect, more sophisticated prediction techniques must be applied. The state-of-the-art of these methods and the problems of their application are considered in the Part II of the analysis.


Author(s):  
A. Yalpaniyan ◽  
M. Goodarzi

A TLP is a buoyant platform containing four cylindrical columns. The purpose of this study was to consider the effects of different model solvers in the numerical solution on the flow pattern around the TLP. The flow around the TLP was numerically simulated with inviscid, laminar, and turbulent solvers. Three Froude numbers were run for each case. There was a symmetry plane that allowed simulating just one half of the flow field. Therefore, two columns along the symmetry plane were considered in the results discussion. Beside the generated surface waves there was a pair of vortex behind each column none of them were actually symmetric. The vortex behind the first column significantly affected the flow pattern around the second one in the manner that the vortex behind the first column was larger than the next one. In all cases the outer vortex was larger than the inner one. The obtained results showed that the generated waves of the inviscid flow were smoother than the turbulent flow, and also those of the turbulent flow were smoother than the laminar ones. Compared to the mentioned results, the influence of the flow velocity on the wave heights was more significant.


Sign in / Sign up

Export Citation Format

Share Document