scholarly journals Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video

2010 ◽  
Vol 53 (19-20) ◽  
pp. 4185-4192 ◽  
Author(s):  
Craig Gerardi ◽  
Jacopo Buongiorno ◽  
Lin-wen Hu ◽  
Thomas McKrell
1999 ◽  
Author(s):  
Daiju Motoya ◽  
Ikuya Haze ◽  
Masahiro Osakabe

Abstract Nucleate pool boiling of water on clean and fouling surfaces was conducted in microgravity and earth gravity. The microgravity experiments were conducted in 8 s JAMIC drop shaft in Hokkaido of Japan. Platinum wires of 0.2 mm in diameter with or without fouling scale were used to provide uniform heat flux and measurement of the mean temperature of wires. The generated bubble volume was measured with high-speed video or CCD images. The more vigorous bubbling was observed on the fouling wire compared to that on the clean wire at a same heat flux both in earth gravity and microgravity. The enhancement of the bubbling was associated with the fact that the hydrophilic porous structure in the fouling scale provided the sufficient number of active sites for bubbling nucleation. The wettability of the surface with the fouling scale was much higher than that of the clean bare surface. The bubble departure diameter on the fouling wire was smaller due to the high wettability than that on the clean wire. The latent heat transportation ratio to the total heat flux was calculated with the generated bubble volume measured with high-speed video or CCD images. The ratio was approximately the same at the clean and fouling wires in spite of the apparent difference in bubbling behavior, but it was significantly affected with the gravity level. The ratio increased with an increase of the heat flux in the earth gravity but it remained at the smaller value in the microgravity. The nucleate heat transfer coefficient on the bare surface did not depend on the gravity levels although the bubbling behavior strongly affected with the gravity level. As the wire radius is small compared to the capillary length scale in microgravity, a growing and coalescing bubble sometimes completely covered the clean wire, evaporating all liquid in contact with the surface and inducing a transition to film boiling. However, on the fouling wire, many small bubbles were generated and sprang from the surface in various directions in microgravity. The spring out action of bubbles suppressed the transition to the film boiling on the fouling wire in the present experimental range.


Author(s):  
G. Hetsroni ◽  
A. Mosyak

The presence of surfactant additives in water was found to enhance significantly the boiling heat transfer. The objective of the present investigation was to compare the bubble growth in water to that of a surfactant solution with negligible environmental impact. The study was conducted to clarify the effect of the heat flux on the dynamics of bubble nucleation. The bubble growth under condition of pool boiling in water and surfactant solutions was studied using high speed video technique. The bubble generation was studied on a horizontal flat surface; where the natural roughness of the surface was used to produce the bubbles. At heat flux of q= 10 kW/m2 the life-time and the volume of bubble growth in surfactant solution did not differ significantly from those of water. The time behavior of the contact angle of bubble growing in surfactant solution is qualitatively similar to that of water. At a heat flux of q= 50 kW/m2, boiling in surfactant solution, when compared with that of pure water, was observed to be more vigorous. Surfactant promotes activation of nucleation sites; the bubbles appeared in a cluster mode; the life-time of each bubble in the cluster is shorter than that of a single water bubble. The detachment diameter of water bubble increases with increasing heat flux, whereas analysis of bubble growth in surfactant solution reveals the opposite effect: the detachment diameter of the bubble decreases with increasing heat flux. Natural convection boiling of water and surfactants at atmospheric pressure in narrow horizontal annular channels was studied experimentally in the range of Bond numbers Bo = 0.185–1.52. The flow pattern was visualized by high-speed video recording to identify the different regimes of boiling of water and surfactants. The channel length was 24mm and 36mm, the gap size was 0.45, 1.2, 2.2, and 3.7mm. The heat flux was in the range of 20–500 kW/m2, the concentration of surfactant solutions was varied from 10 to 600 ppm. For water boiling at Bond numbers Bo<1 the CHF in restricted space is lower than that in unconfined space. This effect increases with increasing the channel length. For water at Bond number Bo = 1.52, boiling can almost be considered as unconfined. Additive of surfactant led to enhancement of heat transfer compared to water boiling in the same gap size, however, this effect decreased with decreasing gap size. For the same gap size, CHF in surfactant solutions was significantly lower than that in water. Hysteresis was observed for boiling in degraded surfactant solutions.


2008 ◽  
Author(s):  
Craig Gerardi ◽  
Jacopo Buongiorno ◽  
Lin-Wen Hu ◽  
Thomas McKrell

This paper presents the results of an experimental study on nucleate pool boiling. Experiments were performed using vapor-deposited thin films which were electrically heated. High-speed infrared and visible cameras simultaneously observed bubble growth from the heater surface. Possible experimental confirmation of microlayer dynamics is presented.


Sign in / Sign up

Export Citation Format

Share Document