Effect of non-linear flow behavior on heat transfer in a thermoacoustic engine core

Author(s):  
Kazuto Kuzuu ◽  
Shinya Hasegawa
Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 364 ◽  
Author(s):  
Huimin Wang ◽  
Jianguo Wang ◽  
Xiaolin Wang ◽  
Andrew Chan

Low-permeability porous medium usually has asymmetric distributions of pore sizes and pore-throat tortuosity, thus has a non-linear flow behavior with an initial pressure gradient observed in experiments. A threshold pressure gradient (TPG) has been proposed as a crucial parameter to describe this non-linear flow behavior. However, the determination of this TPG is still unclear. This study provides multi-scale insights on the TPG in low-permeability porous media. First, a semi-empirical formula of TPG was proposed based on a macroscopic relationship with permeability, water saturation, and pore pressure, and verified by three sets of experimental data. Second, a fractal model of capillary tubes was developed to link this TPG formula with structural parameters of porous media (pore-size distribution fractal dimension and tortuosity fractal dimension), residual water saturation, and capillary pressure. The effect of pore structure complexity on the TPG is explicitly derived. It is found that the effects of water saturation and pore pressure on the TPG follow an exponential function and the TPG is a linear function of yield stress. These effects are also spatially asymmetric. Complex pore structures significantly affect the TPG only in the range of low porosity, but water saturation and yield stress have effects on a wider range of porosity. These results are meaningful to the understanding of non-linear flow mechanism in low-permeability reservoirs.


RSC Advances ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 1656-1665 ◽  
Author(s):  
Xian'gang Hou ◽  
Wenhao Shi ◽  
Tianhong Yang

A non-linear flow model that couples three flow types is built based on flow transition to investigate the flow behavior of water inrush induced by KCC.


2000 ◽  
Vol 2000.37 (0) ◽  
pp. 233-234
Author(s):  
Hironori SUGATA ◽  
Tsutomu TAKAHASHI ◽  
Masataka SHIRAKASHI

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2986 ◽  
Author(s):  
Gang Lei ◽  
Nai Cao ◽  
Di Liu ◽  
Huijie Wang

Prediction of the non-linear flow in porous media is still a major scientific and engineering challenge, despite major technological advances in both theoretical and computational thermodynamics in the past two decades. Specifically, essential controls on non-linear flow in porous media are not yet definitive. The principal aim of this paper is to develop a meaningful and reasonable quantitative model that manifests the most important fundamental controls on low velocity non-linear flow. By coupling a new derivative with fractional order, referred to conformable derivative, Swartzendruber equation and modified Hertzian contact theory as well as fractal geometry theory, a flow velocity model for porous media is proposed to improve the modeling of Non-linear flow in porous media. Predictions using the proposed model agree well with available experimental data. Salient results presented here include (1) the flow velocity decreases as effective stress increases; (2) rock types of “softer” mechanical properties may exhibit lower flow velocity; (3) flow velocity increases with the rougher pore surfaces and rock elastic modulus. In general, the proposed model illustrates mechanisms that affect non-linear flow behavior in porous media.


2021 ◽  
Vol 133 ◽  
pp. 104065
Author(s):  
Guan Rong ◽  
Long Cheng ◽  
Renhui He ◽  
Junsong Quan ◽  
Jie Tan

2018 ◽  
Vol 58 (1-2) ◽  
pp. 1-8
Author(s):  
José A. Carmona ◽  
Pablo Ramírez ◽  
M. Carmen García ◽  
Jenifer Santos ◽  
José Muñoz

Open Physics ◽  
2014 ◽  
Vol 12 (12) ◽  
Author(s):  
Rizwan Haq ◽  
Sohail Nadeem ◽  
Zafar Khan ◽  
Toyin Okedayo

AbstractCurrent study examines the magnetohydrodynamic (MHD) boundary layer flow of a Casson nanofluid over an exponentially permeable shrinking sheet with convective boundary condition. Moreover, we have considered the suction/injection effects on the wall. By applying the appropriate transformations, system of non-linear partial differential equation along with the boundary conditions are transformed to couple non-linear ordinary differential equations. The resulting systems of non-linear ordinary differential equations are solved numerically using Runge-Kutta method. Numerical results for velocity, temperature and nanoparticle volume concentration are presented through graphs for various values of dimensionless parameters. Effects of parameters for heat transfer at wall and nanoparticle volume concentration are also presented through graphs and tables. At the end, fluid flow behavior is examined through stream lines. Concluding remarks are provided for the whole analysis.


2017 ◽  
Vol 10 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Wang Shou-long ◽  
Li Ai-fen ◽  
Peng Rui-gang ◽  
Yu Miao ◽  
Fu Shuai-shi

Objective:The rheological properties of oil severely affect the determination of percolation theory, development program, production technology and oil-gathering and transferring process, especially for super heavy oil reservoirs. This paper illustrated the basic seepage morphology of super heavy oil in micro pores based on its rheological characteristics.Methods:The non-linear flow law and start-up pressure gradient of super heavy oil under irreducible water saturation at different temperatures were performed with different permeable sand packs. Meanwhile, the empirical formulas between start-up pressure gradient, the parameters describing the velocity-pressure drop curve and the ratio of gas permeability of a core to fluid viscosity were established.Results:The results demonstrate that temperature and core permeability have significant effect on the non-linear flow characteristics of super heavy oil. The relationship between start-up pressure gradient of oil, the parameters representing the velocity-pressure drop curve and the ratio of core permeability to fluid viscosity could be described as a power function.Conclusion:Above all, the quantitative description of the seepage law of super heavy oil reservoir was proposed in this paper, and finally the empirical diagram for determining the minimum and maximum start-up pressure of heavy oil with different viscosity in different permeable formations was obtained.


Author(s):  
Mengjing Zhao ◽  
Yong Wong ◽  
Shufeng Yang ◽  
Jingshe Li ◽  
Wei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document