Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation

Author(s):  
Amir Kakavandi ◽  
Mohammad Akbari
2018 ◽  
Vol 14 (2) ◽  
pp. 104-112 ◽  
Author(s):  
Mohammad Hemmat Esfe ◽  
Somchai Wongwises ◽  
Saeed Esfandeh ◽  
Ali Alirezaie

Background: Because of nanofluids applications in improvement of heat transfer rate in heating and cooling systems, many researchers have conducted various experiments to investigate nanofluid's characteristics more accurate. Thermal conductivity, electrical conductivity, and heat transfer are examples of these characteristics. Method: This paper presents a modeling and validation method of heat transfer coefficient and pressure drop of functionalized aqueous COOH MWCNT nanofluids by artificial neural network and proposing a new correlation. In the current experiment, the ANN input data has included the volume fraction and the Reynolds number and heat transfer coefficient and pressure drop considered as ANN outputs. Results: Comparing modeling results with proposed correlation proves that the empirical correlation is not able to accurately predict the experimental output results, and this is performed with a lot more accuracy by the neural network. The regression coefficient of neural network outputs was equal to 99.94% and 99.84%, respectively, for the data of relative heat transfer coefficient and relative pressure drop. The regression coefficient for the provided equation was also equal to 97.02% and 77.90%, respectively, for these two parameters, which indicates this equation operates much less precisely than the neural network. Conclusion: So, relative heat transfer coefficient and pressure drop of nanofluids can also be modeled and estimated by the neural network, in addition to the modeling of nanofluid’s thermal conductivity and viscosity executed by different scholars via neural networks.


2021 ◽  
Vol 12 ◽  
pp. 982-988
Author(s):  
Xin Liu ◽  
Jian Tie ◽  
Zhenya Wang ◽  
Yuting Xia ◽  
Chang-An Wang ◽  
...  

1987 ◽  
Vol 8 (2) ◽  
pp. 263-280 ◽  
Author(s):  
H. Reiss ◽  
F. Schmaderer ◽  
G. Wahl ◽  
B. Ziegenbein ◽  
R. Caps

1991 ◽  
Vol 226 ◽  
Author(s):  
Wang Chunqing ◽  
Qian Yiyu ◽  
Jiang Yihong

AbstractIn this paper,a numerical simulation of thermal process in the SMT laser microsoldering joint has been developed, in which, the influence on thermal process of the factors such as the thermal conductivity variation of solder with temperature, light reflection coefficient of the lead wire surface, and heat exchange on the surface of SMT materials all have been considered. In order to carry this numerical calculation practice and prove it's results,the reflexive characteristic of light wave to the SMT materials has been gauged,and the dynamic temperature process of laser microjoint has been measured by a new experimental method which was invented by the authors.The results of numerical simulation have been borne out by the tests, and the influences of heating parameters on thermal process has been analysed in this paper.The conclusions will be advantageous to the further study of the microjoint quality control in the SMT laser microsoldering.


Sign in / Sign up

Export Citation Format

Share Document