scholarly journals Experimental investigation of nanoparticles concentration, boiler temperature and flow rate on flow boiling of zinc bromide and acetone solution in a rectangular duct

Author(s):  
Hayder I. Mohammed ◽  
Donald Giddings ◽  
Gavin S. Walker
2011 ◽  
Vol 199-200 ◽  
pp. 1574-1578
Author(s):  
Xin Guan ◽  
Hu Gen Ma ◽  
Rong Jian Xie ◽  
Jian Mei Bai ◽  
Hong Liu

Mechanism of flow boiling heat transfer in micro-channel and mini-channel with non-azeotropic refrigerant mixture R32/R134a is studied in this paper. Experimental research is carried out at different mass flow rate, heat flux and quality. The difference of heat transfer in two single tubes is analyzed.


Author(s):  
Jian Pu ◽  
Zhaoqing Ke ◽  
Jianhua Wang ◽  
Lei Wang ◽  
Hongde You

This paper presents an experimental investigation on the characteristics of the fluid flow within an entire coolant channel of a low pressure (LP) turbine blade. The serpentine channel, which keeps realistic blade geometry, consists of three passes connected by a 180° sharp bend and a semi-round bend, 2 tip exits and 25 trailing edge exits. The mean velocity fields within several typical cross sections were captured using a particle image velocimetry (PIV) system. Pressure and flow rate at each exit were determined through the measurements of local static pressure and volume flow rate. To optimize the design of LP turbine blade coolant channels, the effect of tip ejection ratio (ER) from 180° sharp bend on the flow characteristics in the coolant channel were experimentally investigated at a series of inlet Reynolds numbers from 25,000 to 50,000. A complex flow pattern, which is different from the previous investigations conducted by a simplified square or rectangular two-pass U-channel, is exhibited from the PIV results. This experimental investigation indicated that: a) in the main flow direction, the regions of separation bubble and flow impingement increase in size with a decrease of the ER; b) the shape, intensity and position of the secondary vortices are changed by the ER; c) the mass flow ratio of each exit to inlet is not sensitive to the inlet Reynolds number; d) the increase of the ER reduces the mass flow ratio through each trailing edge exit to the extent of about 23–28% of the ER = 0 reference under the condition that the tip exit located at 180° bend is full open; e) the pressure drop through the entire coolant channel decreases with an increase in the ER and inlet Reynolds number, and a reduction about 35–40% of the non-dimensional pressure drop is observed at different inlet Reynolds numbers, under the condition that the tip exit located at 180° bend is full open.


1984 ◽  
Vol 28 (02) ◽  
pp. 90-106
Author(s):  
Jacques Verron ◽  
Jean-Marie Michel

Experimental results are given concerning the behavior of the flow around three-dimensional base-vented hydrofoils with wetted upper side. The influence of planform is given particular consideration so that the sections of the foils are simple wedges with rounded noses. Results concern cavity configuration, the relation between the air flow rate and cavity pressure, leading-edge cavitation, cavity length, pulsation frequency, and force coefficients.


Author(s):  
Gaffar G. Momin

Cavitation phenomenon is basically a process formation of bubbles of a flowing liquid in a region where the pressure of the liquid falls below its vapour pressure and it is the most challenging fluid flow abnormalities leading to detrimental effects on both the centrifugal pump discharge characteristics as well as physical characteristics. In this low pressure zones are the first victims of cavitation. Due to cavitation pitting of impeller occurs and wear of internal walls of pumps occurs due to which there is creation of vibrations and noize are there. Due to this there is bad performance of centrifugal pump is there. Firstly, description of the centrifugal pump with its various parts are described after that pump characteristics and its important parameters are presented and discussed. Passive discharge (flow rate) control methods are utilized for improvement of flow rate and mechanical and volumetric and overall efficiency of the pump. Mechanical engineers is considering an important phenomenon which is known as Cavitation due to which there is decrease in centrifugal pump performance. There is also effect on head of the pump which is getting reduced due to cavitation phenomenon. In present experimental investigation the cavitation phenomenon is studied by starting and running the pump at various discharges and cavitating conditions of the centrifugal pump. Passive discharge (flow rate) control is realized using three different impeller blade leading edge angles namely 9.5 degrees, 16.5 degrees .and 22.5 degrees for reduction in the cavitation and increase the of the centrifugal pump performance at different applications namely, domestic, industrial applications of the centrifugal pump.


Sign in / Sign up

Export Citation Format

Share Document