Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks

Author(s):  
Ali Ghahremannezhad ◽  
Huijin Xu ◽  
Mohammad Alhuyi Nazari ◽  
Mohammad Hossein Ahmadi ◽  
Kambiz Vafai
2002 ◽  
Vol 22 (14) ◽  
pp. 1569-1585 ◽  
Author(s):  
S.H. Chong ◽  
K.T. Ooi ◽  
T.N. Wong

2021 ◽  
Author(s):  
Naga Ramesh Korasikha ◽  
Thopudurthi Karthikeya Sharma ◽  
Gadale Amba Prasad Rao ◽  
Kotha Madhu Murthy

Thermal management of electronic equipment is the primary concern in the electronic industry. Miniaturization and high power density of modern electronic components in the energy systems and electronic devices with high power density demanded compact heat exchangers with large heat dissipating capacity. Microchannel heat sinks (MCHS) are the most suitable heat exchanging devices for electronic cooling applications with high compactness. The heat transfer enhancement of the microchannel heat sinks (MCHS) is the most focused research area. Huge research has been done on the thermal and hydraulic performance enhancement of the microchannel heat sinks. This chapter’s focus is on advanced heat transfer enhancement methods used in the recent studies for the MCHS. The present chapter gives information about the performance enhancement MCHS with geometry modifications, Jet impingement, Phase changing materials (PCM), Nanofluids as a working fluid, Flow boiling, slug flow, and magneto-hydrodynamics (MHD).


Author(s):  
Han Shen ◽  
Yingchun Zhang ◽  
Hongbin Yan ◽  
Bengt Sunden ◽  
Gongnan Xie

Previous research has proved Double-layer Microchannel Heat Sinks (MHSs) to be efficient ways to improve the cooling performance of electronic devices. However, the cooling potential of the upper working liquid cannot be fully utilized to cool down the substrate with the heated elements. In this sense, a concept of staggered double-layer MHS is proposed and designed. The parallel and counter flow directions are considered to investigate the flow arrangement effect. The Reynolds number effect, Nusselt number and pressure drop are analyzed in detail and compared with those of a parallel straight double-layer MHS. It is found that the staggered double-layer MHSs exhibit much better heat transfer enhancement and overall thermal performance compared with the parallel straight double-layer MHS. For the staggered double-layer MHSs, the counter flow case is superior to the parallel flow case. This research provides a new structure design to enhance the heat transfer in microchannel heat sinks and broad application prospects for heat sinks in the thermal management of high power density electronic devices.


Sign in / Sign up

Export Citation Format

Share Document