Experimental measurements on chemical reaction and thermal conductivity of the H2/CO2/CO/CH4/H2O system using the short-hot-wire method at 664–915 K and 9.2–22.2 MPa

Author(s):  
Fengyi Li ◽  
Weigang Ma ◽  
Hui Jin ◽  
Xing Zhang ◽  
Liejin Guo
Author(s):  
Marcelo Borges dos Santos ◽  
CLAUDIA BITTENCOURT ◽  
Ana Carolina Mendonça Mansur ◽  
Luís Mauro Moura ◽  
Carlos Augusto Castro Ferreira

1999 ◽  
Vol 29 ◽  
pp. 151-154 ◽  
Author(s):  
Crescenzo Festa ◽  
Aristide Rossi

AbstractAn apparatus is described for measuring the thermal conductivity of ice by the transient hot-wire method. Thermal conductivity A, is determined by tracking the thermal pulse induced in the sample by a heating source consisting of a platinum resistor. A central segment of the same platinum heating resistor acts also as a thermal sensor. A heat pulse transferred to the ice for a period of 40s gives a maximum temperature increment of about 7-14°C. In good experimental conditions, the expected reproducibility of the measurements is within ±3%. The accuracy of the method depends on whether the instrument has been calibrated by reliable standard samples, certified by absolute methods.


Refractories ◽  
1978 ◽  
Vol 19 (9-10) ◽  
pp. 561-565
Author(s):  
Ya. A. Landa ◽  
E. Ya. Litovskii ◽  
B. S. Glazachev ◽  
N. A. Puchkelevich ◽  
A. V. Klimovich

2014 ◽  
Vol 45 (2) ◽  
pp. 64 ◽  
Author(s):  
Chiara Cevoli ◽  
Angelo Fabbri ◽  
Simone Virginio Marai ◽  
Enrico Ferrari ◽  
Adriano Guarnieri

Thermal conductivity of a food material is an essential physical property in mathematical modelling and computer simulation of thermal processing. Effective thermal conductivity of non-homogeneous materials, such as food matrices, can be determined experimentally or mathematically. The aim of the following research was to compare the thermal conductivity of short pastry biscuits, at different baking stages (60-160 min), measured by a line heat source thermal conductivity probe and estimated through the use of thermo-physical models. The measures were carried out on whole biscuits and on powdered biscuits compressed into cylindrical cases. Thermal conductivity of the compacted material, at different baking times (and, consequently at different moisture content), was then used to feed parallel, series, Krischer and Maxwell-Eucken models. The results showed that the application of the hot wire method for the determination of thermal conductivity is not fully feasible if applied directly to whole materials due to mechanical changes applied to the structure and the high presence of fats. The method works best if applied to the biscuit component phases separately. The best model is the Krischer one for its adaptability. In this case the value of biscuit thermal conductivity, for high baking time, varies from 0.15 to 0.19 Wm<sup>–1</sup> K<sup>–1</sup>, while the minimum, for low baking time, varies from 0.11 to 0.12 Wm<sup>–1</sup> K<sup>–1</sup>. These values are close to that reported in literature for similar products.


1935 ◽  
Vol 12 (3) ◽  
pp. 372-376 ◽  
Author(s):  
A. B. Van Cleave ◽  
O. Maass

The thermal conductivities of deuterium and some mixtures of deuterium and hydrogen have been measured by a relative, "hot wire" method. The results are consistent with the authors' original conclusion that the deuterium molecule has the same molecular diameter as the hydrogen molecule. It follows also that the molecular heats of the hydrogen isotopes are the same.


2016 ◽  
Vol 22 (4) ◽  
Author(s):  
Shangxi WANG ◽  
Dan ZHANG ◽  
Gaoshan LIU ◽  
Wenjun WANG ◽  
Mengxia HU

Sign in / Sign up

Export Citation Format

Share Document