Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study

Author(s):  
Dongwei Zhang ◽  
Zhuantao He ◽  
Jian Guan ◽  
Songzhen Tang ◽  
Chao Shen
Author(s):  
Jing Chen ◽  
Junbiao Dong ◽  
Ye Yao

This study mainly experimentally investigates and explores the effects of local low-frequency vibrations on the starting-up and heat transfer characteristics of the pulsating heat pipe. A micro motors with the vibration frequency of 200 Hz were imposed on the external surface of evaporation, condensation and adiabatic section of the pulsating heat pipe, respectively, and the starting-up temperature and the average temperatures along the evaporation section as well as the thermal performances of the vibrating heat pipe were experimentally scrutinized under the local vibrations of different positions. The following important conclusions can be achieved by the experimental study: 1) The effect of vibrations at the evaporation section and at the adiabatic section on the starting-up time of pulsating heat pipe is more significant than that at the condensation section. 2) The vibrations at different positions can reduce the starting-up temperature of the pulsating heat pipe. The effect of the vibrations at the evaporation section is the best as the heating power is lower, and the effect of the vibration at the adiabatic section is the best as the heating power is higher. 3) The vibrations at the evaporation section and at the adiabatic section can reduce the thermal resistance of the pulsating heat pipe. However, the vibrations at the condensation section have little effect on the thermal resistance of the pulsating heat pipe. 4) The vibrations at the evaporation section and at the adiabatic section can effectively reduce the temperature of evaporation section of the pulsating heat pipe, but the vibrations at the condensation section have no effect on the temperature of evaporation section of the pulsating heat pipe.


Author(s):  
Z. R. Lin ◽  
Z. Y. Lee ◽  
L. W. Zhang ◽  
S. F. Wang ◽  
A. A. Merrikh ◽  
...  

Heat transfer characteristics of an aluminum plate pulsating heat pipe (PHPs) were investigated experimentally. Sizes, consisting of parallel and square channels as well as different cross-sections and different number of turns were considered. Acetone was used as working fluid. The characterization had been done for various heating mode orientations, cooling conditions, and internal structures via flow visualization and thermal performance tests. The flow visualization showed that the aluminum plate PHPs can maintain the heat transfer characteristics of the liquid and the vapor slug as well as the conventional tubular PHPs. The trend of flow pattern changed from the intermittent oscillation to unidirectional circulation. It was also observed that the PHPs’ thermal performance improved as heating power increased. The gravity greatly influenced the thermal performance of plate PHPs. Increasing the cooling temperature decreased the thermal resistance of the plate PHPs. Increasing the number of turns and the area of channel cross-section improved the heat transport capability of plate PHPs for some specific scenarios. A heat sink with a plate PHP was developed for comparing with the pure metal and conventional heat pipe solutions. The result showed that the plate PHPs solution performed well, and had the potential to replace previous solutions in some cases.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6310
Author(s):  
Jing Chen ◽  
Junbiao Dong ◽  
Ye Yao

Vibrations have attracted much attention as an effective method for enhancing heat transfer in pulsating heat pipes (PHPs). This study mainly investigates and explores the effects of local low-frequency vibrations on the starting-up and heat transfer characteristics of a PHP. The starting-up temperature and average temperatures along the evaporation section of the pulsating heat pipe were experimentally scrutinized, along with thermal performance, under local vibrations on evaporation, condensation and adiabatic sections, respectively. The following important conclusions can be derived by the experimental study: (1) The effect of vibrations at the evaporation section and at the adiabatic section during the starting-up time of the PHP were more significant than that at the condensation section; (2) vibrations at different positions could reduce the starting-up temperature of the PHP—the effect of the vibrations at the evaporation section was the best when heat power was lower, while the effect of vibrations on the adiabatic section was the best when heat power was higher; (3) vibrations at the evaporation and adiabatic sections could reduce the thermal resistance of the PHP, but vibrations at the condensation section had little effect on the thermal resistance of the PHP; (4) vibrations at the evaporation and adiabatic sections could effectively reduce the temperature at the evaporation section of the PHP, but the vibrations at the condensation section had no effect on the temperature at the evaporation section of the PHP. This paper shows that local low-frequency vibrations have positive effects on the heat transfer performances of PHPs.


Author(s):  
Bhawna Verma ◽  
V. L. Yadav ◽  
K. K. Srivastava

2015 ◽  
Vol 96 ◽  
pp. 23-34 ◽  
Author(s):  
V. Ayel ◽  
L. Araneo ◽  
A. Scalambra ◽  
M. Mameli ◽  
C. Romestant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document