Heat Transfer Characteristics of Aluminum Plate Pulsating Heat Pipes

Author(s):  
Z. R. Lin ◽  
Z. Y. Lee ◽  
L. W. Zhang ◽  
S. F. Wang ◽  
A. A. Merrikh ◽  
...  

Heat transfer characteristics of an aluminum plate pulsating heat pipe (PHPs) were investigated experimentally. Sizes, consisting of parallel and square channels as well as different cross-sections and different number of turns were considered. Acetone was used as working fluid. The characterization had been done for various heating mode orientations, cooling conditions, and internal structures via flow visualization and thermal performance tests. The flow visualization showed that the aluminum plate PHPs can maintain the heat transfer characteristics of the liquid and the vapor slug as well as the conventional tubular PHPs. The trend of flow pattern changed from the intermittent oscillation to unidirectional circulation. It was also observed that the PHPs’ thermal performance improved as heating power increased. The gravity greatly influenced the thermal performance of plate PHPs. Increasing the cooling temperature decreased the thermal resistance of the plate PHPs. Increasing the number of turns and the area of channel cross-section improved the heat transport capability of plate PHPs for some specific scenarios. A heat sink with a plate PHP was developed for comparing with the pure metal and conventional heat pipe solutions. The result showed that the plate PHPs solution performed well, and had the potential to replace previous solutions in some cases.

2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Randeep Singh ◽  
Aliakbar Akbarzadeh ◽  
Masataka Mochizuki

Two phase heat transfer devices based on the miniature version of loop heat pipe (LHP) can provide very promising cooling solutions for the compact electronic devices due to their high heat flux management capability and long distance heat transfer with minimal temperature losses. This paper discusses the effect of the wick properties on the heat transfer characteristics of the miniature LHP. The miniature model of the LHP with disk-shaped evaporator, 10 mm thick and 30 mm disk diameter, was designed using copper containment vessel and water as the working fluid, which is the most acceptable combination in electronic cooling applications. In the investigation, wick structures with different physical properties including thermal conductivity, pore radius, porosity, and permeability and with different structural topology including monoporous or biporous evaporating face were used. It was experimentally observed that copper wicks are able to provide superior thermal performance than nickel wicks, particularly for low to moderate heat loads due to their low heat conducting resistance. With monoporous copper wick, maximum evaporator heat transfer coefficient (hev) of 26,270 W/m2 K and evaporator thermal resistance (Rev) of 0.06–0.10°C/W were achieved. For monoporous nickel wick, the corresponding values were 20,700 W/m2 K for hev and 0.08–0.21°C/W for Rev. Capillary structure with smaller pore size, high porosity, and high permeability showed better heat transfer characteristics due to sufficient capillary pumping capability, low heat leaks from evaporator to compensation chamber and larger surface area to volume ratio for heat exchange. In addition to this, biporous copper wick structure showed much higher heat transfer coefficient of 83,787 W/m2 K than monoporous copper wick due to improved evaporative heat transfer at wick wall interface and separated liquid and vapor flow pores. The present work was able to classify the importance of the wick properties in the improvement of the thermal characteristics for miniature loop heat pipes.


2018 ◽  
Vol 141 ◽  
pp. 558-564 ◽  
Author(s):  
Chen Feng ◽  
Zhenping Wan ◽  
Haijun Mo ◽  
Heng Tang ◽  
Longsheng Lu ◽  
...  

2016 ◽  
Vol 369 ◽  
pp. 42-47 ◽  
Author(s):  
Patrik Nemec ◽  
Zuzana Kolková ◽  
Milan Malcho

Heat pipe is well known device which is used to heat transfer phase-change of working fluid. Pulsating heat pipe (PHP) is special type of heat pipe which heat transfer by pulsating movement of working fluid. Article deals about operating activity and thermal performance measurement of this special heat pipe. Operating activity visualization of PHP was performed with PHP made from glass. The two types of PHPs were made. The first PHP has internal diameter of tube 1 mm, second PHP has internal diameter of tube 1.5 mm and both PHPs have eleven meanders. The working fluids used in PHP were water and Fluorinert FC-72. These fluids were chose for their different thermo-physical properties and the visualization observe formation of liquid and vapour phase working fluid during filling process and working operation.Next, the article describes thermal performance measurement of PHP depending on working fluid amount and heat source temperature. Measurement was performed with PHP made from copper tube with inner diameter 1.5 mm curved to the twenty one meanders and filled with water. The results give us image about formation and distribution of working fluid in pulsating heat pipe and about influence of working fluid amount on the heat transfer ability of pulsating heat pipe.


Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Ali Adibnia ◽  
Hossein Afshin ◽  
Mohammad Hassan Saidi ◽  
...  

Homogenous dispersing of nanoparticles in a base fluid is an excellent way to increase the thermal performance of heat transfer devices especially Heat Pipes (HPs). As a wickless, cheap and efficient heat pipe, Pulsating Heat Pipes (PHPs) are important candidates for thermal application considerations. In the present research an Open Loop Pulsating Heat Pipe (OLPHP) is fabricated and tested experimentally. The effects of working fluid namely, water, Silica Coated ferrofluid (SC ferrofluid), and ferrofluid without surface coating of nanoparticles (ferrofluid), charging ratio, heat input, and application of magnetic field on the overall thermal performance of the OLPHPs are investigated. Experimental results show that ferrofluid has better heat transport capability relative to SC ferrofluid. Furthermore, application of magnetic field improves the heat transfer performance of OLPHPs charged with both ferrofluids.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1616
Author(s):  
Jaehwan Lee ◽  
Dongmin Kim ◽  
Jeongmin Mun ◽  
Seokho Kim

Infrared detectors on satellites and spacecraft require cooling to increase their measurement sensitivity. To efficiently cool infrared detectors in a zero gravity environment and in limited spaces, a cryogenic loop heat pipe (CLHP) can be used to transfer heat over a certain distance by the capillary forces generated from porous wicks without a mechanical power source. The CLHP presented in this study transfers the heat load to a condenser 0.5 m away from an evaporator at temperatures below −150 °C. The CLHP with two evaporators includes a subloop for initial start-up, and uses a pressure reduction reservoir (PRR) for the supercritical start-up from room to cryogenic temperature. Nitrogen is used as the working fluid to verify the thermal behavior of the CLHP, and the heat-transfer capacity according to the nitrogen charging pressure of the PRR is investigated. To simulate a cryogenic environment, the CLHP is installed inside a space environment simulator, including a single-stage GM (Gifford McMahon) cryocooler to cool the condenser. The CLHP is horizontally installed to simulate zero gravity. The heat-transfer characteristics are experimentally evaluated through the loop circulation of the CLHP.


Sign in / Sign up

Export Citation Format

Share Document