Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition

2009 ◽  
Vol 34 (1) ◽  
pp. 195-203 ◽  
Author(s):  
M HE ◽  
Z HU ◽  
B XIAO ◽  
J LI ◽  
X GUO ◽  
...  
2014 ◽  
Vol 28 (7) ◽  
pp. 4573-4587 ◽  
Author(s):  
Uisung Lee ◽  
J. N. Chung ◽  
Herbert A. Ingley

Fuel ◽  
2014 ◽  
Vol 122 ◽  
pp. 36-46 ◽  
Author(s):  
Chunguang Zhou ◽  
Thomas Stuermer ◽  
Rathnayaka Gunarathne ◽  
Weihong Yang ◽  
Wlodzimierz Blasiak

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
N. Sirirermrux ◽  
K. Laohalidanond ◽  
S. Kerdsuwan

Surrogate municipal solid waste (MSW) has been prepared to represent high plastic content waste with low fixed carbon in order to be utilized for feedstock for the gasification and pyrolysis. The major components are plastic (PE and PP), food and kitchen waste, and paper, whereas the minor components are textile, rubber, and biomass. Reactions were conducted in small drop tube fixed bed reactor with isothermal reaction temperature at 700, 800, and 900 °C. Steam was supplied as the gasifying agent for the main purpose of producing hydrogen-rich gas. Pyrolysis was also conducted at the same condition to observe the characteristic differences. Producer gas, including H2, CH4, and CO, of both the reactions was a function of the temperature, whereas CO2 showed a reversed trend when the reaction temperature was increased. Simple kinetic models of those gaseous formations were studied for describing the related parameters. It is challenging to determine the kinetics of the individual gas generation while most kinetic studies have focused on mass deterioration. The commonly used kinetic model of nucleation of Avrami–Erofe'ev (A2) could well predict the mechanism of the gas formation of gasification. In parallel, the pyrolysis conformed to the A3 model due to the slower rate of char and tar decomposition when the gasifying agent was absent. The activation energy of each gaseous species and the fitting of experimental data with the selected models are examined in this study.


2016 ◽  
Vol 124 ◽  
pp. 92-103 ◽  
Author(s):  
Nuno Dinis Couto ◽  
Valter Bruno Silva ◽  
Abel Rouboa

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Hamza Shafiq ◽  
Shakir Ul Azam ◽  
Arshad Hussain

AbstractApproximately 50 million ton of municipal waste is generated in Pakistan per annum and most of this waste does not reach final deposit sites. In this research, Silvia gas technology for municipal solid waste (MSW) steam gasification is studied to produce high energy density product gas. A detailed simulation model is developed with the help of Aspen Plus®. Catalyst coal bottom ash along with lime (CaO) as sorbent is employed for tar reduction and improving the hydrogen (H2) yield in the product gas. The effect of gasification operating temperature and the ratio of steam to feedstock on synthetic gas composition, hydrogen (H2) yield and heating values of synthesis gas was studied. Coal bottom ash along with CaO had a substantial effect on hydrogen (H2) yield and synthesis gas production. Rise in steam–MSW ratio increased the hydrogen (H2) from 58 to 74.9% (vol.). The maximum value of hydrogen (H2) production, i.e., 74.9% by vol. was achieved at a steam–feedstock ratio of 1.9. A maximum of 79.8% by vol. hydrogen (H2) was attained at 680 °C gasification operating temperature with 1.3 ratio of steam to feedstock and coal bottom ash 0.07% by wt. High value of 13.1 MJ/Nm3 of hydrogen-rich synthetic gas was achieved at 680 °C. The acquired results lay the foundation for the economic feasibility study and pilot plant for MSW usage for hydrogen production.


Sign in / Sign up

Export Citation Format

Share Document