A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell

2011 ◽  
Vol 36 (8) ◽  
pp. 5047-5053 ◽  
Author(s):  
Alireza Askarzadeh ◽  
Alireza Rezazadeh
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5022
Author(s):  
Samuel Raafat Fahim ◽  
Hany M. Hasanien ◽  
Rania A. Turky ◽  
Abdulaziz Alkuhayli ◽  
Abdullrahman A. Al-Shamma’a ◽  
...  

This paper presents a novel minimum seeking algorithm referred to as the Hunger Games Search (HGS) algorithm. The HGS is used to obtain optimal values in the model describing proton exchange membrane fuel cells (PEMFCs). The PEMFC model has many parameters that are linked in a nonlinear manner, as well as a set of constraints. The HGS was used with the aforementioned model to test its performance against nonlinear models. The main aim of the optimization problem was to obtain accurate values of PEMFC parameters. The proposed heuristic algorithm was used with two commercial PEMFCs: the Ballard Mark V and the BCS 500 W. The simulation results obtained using the HGS-based model were compared to the experimental results. The effectiveness of the proposed model was verified under various temperature and partial pressure conditions. The numerical output results of the HGS-based fuel cell model were compared with other optimization algorithm-based models with respect to their efficiency. Moreover, the parametric t-test and other statistical analysis methods were employed to check the robustness of the proposed algorithm under various independent runs. Using the proposed HGS-based PEMFC model, a model with very high precision could be obtained, affecting the operation and control of the fuel cells in the simulation analyses.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


Sign in / Sign up

Export Citation Format

Share Document