Vibration, noise and exhaust emissions analyses of an unmodified compression ignition engine fuelled with low sulphur diesel and biodiesel blends with hydrogen addition

2016 ◽  
Vol 41 (26) ◽  
pp. 11481-11490 ◽  
Author(s):  
Erinç Uludamar ◽  
Şafak Yıldızhan ◽  
Kadir Aydın ◽  
Mustafa Özcanlı
2016 ◽  
Author(s):  
Henrique Dornelles ◽  
Jácson Antolini ◽  
Rafael Sari ◽  
Macklini Dalla Nora ◽  
Paulo Romeu Machado ◽  
...  

2011 ◽  
Vol 110-116 ◽  
pp. 1368-1373 ◽  
Author(s):  
Amar P. Pandhare ◽  
S. G. Wagholikar ◽  
R. B. Jadhav Sachin Musale ◽  
A. S. Padalkar

The heterogeneous catalyst are environment friendly and render the process simplified. A wide variety of solid bases have been examined for this process. The present work reports the use of hydrotalcite catalyst for the synthesis of Biodiesel from jatropha oil. An experimental investigation has been carried out to analyze the performance and emission characteristics of a compression ignition engine fuelled with Jatropha oil and its blends (10%, 20%, 40%, 50%, and 60 % ) with mineral diesel. The effect of temperature on the viscosity of Jatropha oil has also been investigated. A series of engine tests, have been conducted using each of the above fuel blends for comparative performance evaluation. The performance parameters evaluated include thermal efficiency, brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC), and exhaust gas temperature whereas exhaust emissions include mass emissions of CO, HC, NO. These parameters were evaluated in a single cylinder compression ignition diesel engine. The results of the experiment in each case were compared with baseline data of mineral diesel. Significant improvements have been observed in the performance parameters of the engine as well as exhaust emissions. The gaseous emissions of oxide of nitrogen from all blends are lower than mineral diesel at all engine loads. Jatropha oil blends with diesel (up to 50% v/v) can replace diesel for operating the CI engines giving lower emissions and improved engine performance. More over results indicated that B20 have closer performance to diesel and B100 have lower brake thermal efficiency mainly due to its high viscosity compared to diesel.


Sign in / Sign up

Export Citation Format

Share Document