Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine

2016 ◽  
Vol 41 (24) ◽  
pp. 10202-10211 ◽  
Author(s):  
In-Su Han ◽  
Chang-Bock Chung
2011 ◽  
Vol 36 (13) ◽  
pp. 1215-1225 ◽  
Author(s):  
Yamini Sarada Bhagavatula ◽  
Maruthi T. Bhagavatula ◽  
K. S. Dhathathreyan

2017 ◽  
Vol 42 (40) ◽  
pp. 25619-25629 ◽  
Author(s):  
Mehmet Seyhan ◽  
Yahya Erkan Akansu ◽  
Miraç Murat ◽  
Yusuf Korkmaz ◽  
Selahaddin Orhan Akansu

Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Chung-Yao Chien ◽  
Szu-Wei Hsu ◽  
Tsung-Lin Lee ◽  
Pi-Shan Sung ◽  
Chou-Ching Lin

Background: The challenge of differentiating, at an early stage, Parkinson’s disease from parkinsonism caused by other disorders remains unsolved. We proposed using an artificial neural network (ANN) to process images of dopamine transporter single-photon emission computed tomography (DAT-SPECT). Methods: Abnormal DAT-SPECT images of subjects with Parkinson’s disease and parkinsonism caused by other disorders were divided into training and test sets. Striatal regions of the images were segmented by using an active contour model and were used as the data to perform transfer learning on a pre-trained ANN to discriminate Parkinson’s disease from parkinsonism caused by other disorders. A support vector machine trained using parameters of semi-quantitative measurements including specific binding ratio and asymmetry index was used for comparison. Results: The predictive accuracy of the ANN classifier (86%) was higher than that of the support vector machine classifier (68%). The sensitivity and specificity of the ANN classifier in predicting Parkinson’s disease were 81.8% and 88.6%, respectively. Conclusions: The ANN classifier outperformed classical biomarkers in differentiating Parkinson’s disease from parkinsonism caused by other disorders. This classifier can be readily included into standalone computer software for clinical application.


2020 ◽  
pp. 002029402096482
Author(s):  
Sulaiman Khan ◽  
Abdul Hafeez ◽  
Hazrat Ali ◽  
Shah Nazir ◽  
Anwar Hussain

This paper presents an efficient OCR system for the recognition of offline Pashto isolated characters. The lack of an appropriate dataset makes it challenging to match against a reference and perform recognition. This research work addresses this problem by developing a medium-size database that comprises 4488 samples of handwritten Pashto character; that can be further used for experimental purposes. In the proposed OCR system the recognition task is performed using convolution neural network. The performance analysis of the proposed OCR system is validated by comparing its results with artificial neural network and support vector machine based on zoning feature extraction technique. The results of the proposed experiments shows an accuracy of 56% for the support vector machine, 78% for artificial neural network, and 80.7% for the proposed OCR system. The high recognition rate shows that the OCR system based on convolution neural network performs best among the used techniques.


Sign in / Sign up

Export Citation Format

Share Document